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Course Content

July 7: Dynamic Programming and its solutions, Closed form solution for
the Linear Quadratic Gaussian (LQG) control problem, Infinite horizon
stochastic control problems (discounted and average cost with finite state
and action space), Bellman optimality equation, existence of stationary
control policy,

July 8: Curse of dimensionality in solving Dynamic Programming
algorithms, Approximate Dynamic Programming algorithms –
approximation in policy space and value space, contraction properties and
error bounds, simulation based implementation

July 9: Advanced Reinforcement Learning: policy gradient methods,
actor-critic based reinforcement learning and their applications to
continuous control (such as LQG) problems
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Course Material

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control, volumes 1
and 2, Athena Scientific, 2012

[2] Sutton and Barto, Reinforcement Learning: Second Edition, MIT Press.

[3] D.P.Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming, Athena
Scientific, 1996

[4] https://www.mit.edu/ dimitrib/dpbook.html (All resources related to
Bertsekas’s lecture slides and videos)

[4] Relevant research papers will be referred to and distributed during the
lectures.
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Dynamic Programming and how to solve it

Finite Horizon Dynamic Programming:
xk+1 = f(xk, uk, wk), uk ∈ Uk(xk), Transition probability
P (xk+1|xk, uk), policy π = {µ0, µ1, . . . , µN−1}, such that
uk = µk(xk) ∈ Uk(xk).

Expected cost starting at x0 under policy π is

Jπ(x0) = E[gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)],

J∗(x0) = min
π

J(x0) = Jπ∗(x0)

Consider the tail subproblem starting at time i at xi and we want to
minimize the cost-to-go to time N with the tail policy {µ∗

i , . . . , µ
∗
N−1}

E[gN (xN ) +

N−1∑
k=i

gk(xk, µk(xk), wk)]

.

Principle of Optimality: The tail policy is optimal for the tail subproblem
(unaffected by past controls)

DP recursively solves all the tail subproblems starting from k = N − 1.
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Dynamic Programming (DP) algorithm

Start with Value Function VN (xN ) = gN (xN )

Go backwards with

Vk(xk) = min
uk

E[gk(xk, uk, wk) + Vk+1(xk+1)], k = N − 1, N − 2, . . . , 1

The optimal cost is given by V ∗
0 (x0) = V0(x0) with the optimal policy

obtained by π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1}

Proof by induction : Let’s do it!
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Dynamic Programming: Computational difficulty

Note that the value function has to be evaluated for each value of the
state xk at each time k. For finite state and action space, this is possible
but computationally intensive for large state and action space, complexity
O(N |X||U|), where |X|, |U | are the cardinalities of the state and action
space (when they are finite).

For continuous state and action space, there are no closed form solutions
to the value function in general.

Exception: Linear Quadratic Control

xk+1 = Axk +Buk + wk

gk(.) = xk
TQxk + uk

TRuk

Derivation of optimal control law

J∗(u∗
0, u

∗
1, . . . , u

∗
n−1) = min

u0,...,uN−1

E

[
xT
NQfxN +

N−1∑
t=0

(xT
t Qxt + uT

t Rut)

]
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Infinite Horizon Stochastic Control Problems

Minimize a total discounted cost

Jπ(x0) = lim
N→∞

[
N−1∑
k=0

αkg(xk, µk(xk), wk)

]
subject to xk+1 = f(xk, uk, wk)

Here 0 < α < 1 is a discount factor to keep the total cost bounded. The
policy π = {µ0, µ1, . . . }, the expectation is taken over the
noise/disturbance sequence {w0, w1, . . .}
One needs to consider lim sup if the limit does not exist.

J∗(x) = minπ Jπ(x), ∀x is the optimal cost with optimal policy π∗

A policy π is stationary if π = {µ, µ, . . .}, and the corresponding cost
function is defined by Jµ(x). The stationary policy µ is optimal if
Jµ(x) = J∗(x), ∀x.
WHY CONSIDER INFINITE HORIZON COSTS?
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Infinite Horizon Stochastic Control Problems

Similar to the finite horizon scenario, one can consider a dynamic
programming formulation under a stationary policy µ

(TµV )(x) = E [g(x, µ(x), w) + αV (f(x, µ(x), w))]

Here TµV may be viewed as the cost function associated with policy µ
for a one-stage problem that has a stage cost g and terminal cost αV .

For a k-stage problem one can similarly define a mapping T k
µV by

applying the mapping Tµ recursively to T k−1
µ V , starting from

(T 0
µV )(x) = V (x).

MONOTONICITY LEMMA: One can easily show that for any two
functions V (x) ≤ V ′(x), ∀x, (T k

µV )(x) ≤ (T k
µV

′)(x), ∀x, ∀k.
WHEN CAN WE EXPECT TO HAVE STATIONARY OPTIMAL
POLICIES?
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Infinite Horizon Stochastic Control Problems

Generally, the existence of stationary optimal control policies depends on
the nature of the cost function g, and the transition probability kernel
P (xk+1|xk, µ(xk)) (or equivalently, the probability distribution of wk)

We will consider the simple case of finite state and action space and
bounded cost per stage |g(.)| ≤ M for all values of (x, u, w).
(Boundedness is not necessarily a very restrictive assumption!)

Convergence of the DP algorithm: For the total discounted cost problem,
one can show that for any bounded funvtion V (x), the optimal cost
function satisfies

V ∗(x) = lim
N→∞

(TNV )(x), ∀x

It also follows that for a given stationary policy µ, one can show that

Vµ(x) = lim
N→∞

(TN
µ V )(x), ∀x
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Infinite Horizon Stochastic Control Problems

Bellman’s Equation of Optimality

V ∗(x) = min
u∈U(x)

E{g(x, u, w) + αV ∗(f(x, u, w)))}

Or, equivalently, V ∗ = TV ∗

Furthermore, V ∗ is the unique solution of this equation within the class
of bounded functions.

One can similarly show that for every stationary policy µ, the associated
cost function satisfies

Vµ(x) = E{g(x, µ(x), w) + αVµ(f(x, µ(x), w)))}
Or, equivalently, Vµ = TµVµ
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Infinite Horizon Stochastic Control Problems: Discounted
costs

Necessary and Sufficient Condition for Optimality A stationary policy µ

is opitmal if and only if µ(x) attains the minimum in Bellman’s equation
for each x, i.e.

TV ∗ = TµV
∗

In case of a finite action set for each state x, an optimal stationary policy
is guaranteed to exist.

Finally, for any two bounded functions V (x), V ′(x), and any stationary
policy µ, one can also show the following convergence rate for
k = 0, 1, . . .

max
x

|(T kV )(x)− (T kV ′)(x)| ≤ αk max
x

|V (x)− V ′(x)|

max
x

|(T k
µV )(x)− (T k

µV
′)(x)| ≤ αk max

x
|V (x)− V ′(x)|

For finite state systems, where the state space S = {1, 2, . . . , n} and
u ∈ U(i), one can write

(TV )(i) = min
u∈U(i)

[g(i, u) + α
n∑

j=1

pij(u)V (j)], ∀i = 1, 2, . . . , n

and a similar equation for (TµV ). 11 / 13



Infinite Horizon Stochastic Control Problems: Average
Cost per stage (briefly)

Finite state and action space

Here we minimize the cost

Jπ(x0) = lim
N→∞

1

N
E{

N−1∑
k=0

g(xk, µk(xk))}

over all policies {µ0, µ1, . . . , } starting from a given initial state x0.

Optimality Conditions: If a scalar λ and an n-dimensional vector h satisfy

λ+ h(i) = min
u∈U(i)

[
g(i, u) +

n∑
j=1

pij(u)h(j)

]
, i = 1, 2, . . . , n

then λ is the optimal average cost per stage for all i, i.e.
λ = minπ Jπ(i) = J∗(i).

h(.) is known as the differential or relative cost vector since one can show
that h(i)− h(j) = (TNh)(i)− (TNh)(j) for all i, j.
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Infinite Horizon Stochastic Control Problems: Average
Cost per stage (briefly)

For a stationary policy µ, one can show similarly, that if a scalar λµ and
an n-dimensional vector hµ satisfy

λµ + hµ(i) = g(i, µ(i)) +

n∑
j=1

pij(µ(i))hµ(j), ∀i

then λµ = Jµ(i).

Whwn µ is a unichain policy (i.e the transition probability P (µ) has a
single recurrent class), one can prove the existence and uniqueness of
λµ, hµ.

Question: How to find such optimal policies?
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