
An Introduction to Stochastic Control and Reinforcement
Learning

Subhrakanti Dey and Simone Garatti

Signals and Systems, Dept of Electrical Engineering, Uppsala University
Politechnico Di Milano, Milan

SIDRA Summer School, Bertinoro, Italy

July 2025

1 / 13

Approximate Dynamic Programming and applications

Acknowledgements: Some slides, images and content taken from

1 Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
2 Warren Powell, Approximate Dynamiic Programming , 2007
3 Lecture notes and slides by Prof D. P. Bertsekas, available at

https://www.mit.edu/ dimitrib/dpbook.html

Lecture contents: Introduction to Approximate DP due to curse of
dimensionality, Approximation architectures, Simulation based methods,
Approximate Value and Policy Iteration

2 / 13

A Recap of Value Iteration and Policy Iteration methods

Finite state and action space MDP

Bellman equation for dynamic programming: V ∗ = TV ∗, Vµ = TµVµ

V ∗(i) = min
u∈U(i)

N∑
j=1

pij(u)(g(i, u, j) + αV ∗(j)), ∀i

Vµ(i) =
N∑

j=1

pij(µ(i))(g(i, µ(i), j) + αVµ(j))

Optimality condition: µ is an optimal policy if TµV
∗ = TV ∗, or

µ(i) ∈ arg min
u∈U(i)

N∑
j=1

pij(u)(g(i, u, j) + αV ∗(j))

3 / 13

A Recap of Value Iteration and Policy Iteration methods

Value Iteration: For any V ∈ Rn

V ∗(i) = lim
k→∞

(T kV)(i), ∀i

Policy Iteration: Given policy µk, find Vµk (policy evaluation) by solving

Vµk (i) =

N∑
j=1

pij(µ
k(i))(g(i, µk(i), j) + αVµk (j))

Then do policy improvement by finding

µk+1(i) ∈ arg min
u∈U(i)

N∑
j=1

pij(u)(g(i, u, j) + αVµk (j))

For large state and action spaces policy evaluation (requires solving
N ×N equations) is computationally burdensome, similarly for solving for
value function at each iteration can involve exponential complexity in
state space, worse for continuous state space, as the value function has
no closed form solution (curse of dimensionality)

4 / 13

Approximate Dynamic Programming (ADP)

ADP allows the application of DP towards very large or infinite state
space

A fertile research area since the 1980’s

We will only consider the finite state action space discounted MDP
scenario

We will consider Approximaton in Value-space and Approximation in
Policy Space, which are simulation based methods

We won’t discuss other methods such as state aggregation or rollout
based approaches.

simulations are useful when exact models are not available but one can
generate samples by computer simulation, allowing averaging over
samples to compute expectations

5 / 13

Approximation in Value Space

Approximate V ∗ or Vµ from a parametric class Ṽ (i; r) where i is the
current state and r is a set of tunable parameters, and use Ṽ instead of
V ∗ in computations

Questions: How to choose the parametric forms and how to tune the
weights?

Problem insight may help, and a simulator may be used when there is no
mathematical model of the system

One can also use parametric approximations for the Q functions (state
action value function)

Approximation architectures can be linear (simple) or nonlinear (e.g. a
neural network), which can give a richer approximation (implying linear or
nonlinear dependence on the parameter vector r)

6 / 13

Approximation in Value Space

In the computer chess example, one can think of the board position as
states and moves as actions

Use a feature based position evaluator that assigns a score (like a Q
value) to each position/move

Relatively few special features and weights can do the job

7 / 13

Approximation in Value Space

With few well chosen features (which often encode much of the inherent
nonlinearity in the cost function), one can use just a linear architecture
Ṽ (r) = Φr =

∑
j Φjrj .

The feature space (columns Φj can be chosen as polynomial or radial
basis functions etc.)

One can also choose a special set of states and use a parameter vector
with an element for each of these states. For the chosen states, use
Ṽ (i; r) = ri and for those states which are not in the chosen set, use
interpolation of some kind.

In the game of Tetris with more than 2200 number of states, only 22
features are enough, recognized by the players as capturing important
aspects of the board position

8 / 13

Approximating policy iterations

Use simulation to estimate the value function Vµ or the Q-factor Qµ for a
particular initial policy µ

Then generate improved policy µ̄ by minimizing the approximate V or Q.

One can similarly approximate the optimal Q-factors or the optimal cost
function V ∗ by iteratively simulating the Q-factors from the value
functions, and then finding the optimal cost, or by finding the optimal
parameter vector to minimize the Bellman error metric

9 / 13

Approximation in Policy Space

Start with initial policy µ, and then evaluate it using a linear parametric
approximation of the cost function J̃µ(r) = Φr, where Φ is a full rank
n× s matrix of the basis functions, and the i-th row denoted by ΦT (i).

Policy improvement

µ̄(i) = arg min
u∈U(i)

N∑
j=1

pij(u)(g(i, u, j) + αΦT (j)r)

10 / 13

Approximation in Policy Space

Error Bound: If maxi |Ṽµk (i, r)− Vµk (i)| ≤ δ, then

lim
k→∞

max
i

(Vµk (i)− V ∗(i)) ≤ 2αδ

(1− α)2

If policy improvement is also approximate

max
i

|(Tµk+1 Ṽ (i, r)− (T Ṽ)(i, r)| ≤ ϵ

Then

lim
k→∞

max
i

(Vµk (i)− V ∗(i)) ≤ ϵ+ 2αδ

(1− α)2

11 / 13

Approximation in Policy Space: Practical Issues

The method makes steady progress upto a certain point and then the
iterates oscillate (unpredictably) within a neighbourhood of V ∗.

Since it starts with a specific initial policy µ0, it may not visit all the
states and the cost-to-go approximation of the underrepresented states
can be quite bad

Inadequate exploration: This also affects the policy improvement
outcome.

Possible remedies: Retart simulations frequently from a rich set of initial
states, occasionally use a randomly selected control other than the policy,
use two different independent Markov chains - one to generate the
transition sequence, and another to generate the state sequence.

12 / 13

Approximate Policy Evaluation

Direct Policy Evaluation: Cost samples generated by simulations and
optimization via Least Squares (to find the optimal parameters)

Indirect Policy Evaluation: Solve a projected equation Φr = ΠTµ(Φr)
where Π is a projection with respect to a suitable Eucludiean norm

To calculate Π, one can use simulation based methods such as TD(λ),
LSTD, LSPE etc.. (we learn more about these tomorrow from Simone)

13 / 13

