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Policy Gradient and Actor-Critic Methods and applications

Acknowledgements: Some slides, images and content taken from

1 Reinforcement Learning: An Introduction. Richard S. Sutton
and Andrew G. Barto, second edition, 2018.

2 UCL Course, Reinforcement Learning, videos and slides. David
Silver, 2015.

3 Lecture slides, Department of Informatics, University of Pisa
Lecture contents: Policy Gradient based reinforcement learning, Policy
Gradient theorem, computation of policy gradients, Different variations of
policy gradient algorithms, application to LQG control
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Policy based RL

From value to policy
In value based PI, we learn action-values and then select actions: first 
values, then the policy.
The policy would not even exist without the action-value estimates. 
Why not learn directly the policy?

Policy approximation
Approximate the policy by θ ∈ Rd ′ :

πθ(a|s) = π(a|s,θ) = Pr(At = a|St = s,θt = θ)



Parametrization

Discrete and not too large action space
Common choice: numerical preferences h(s, a,θ) for state-action.

highest preferences = highest probabilities, with soft-max distribution:

πθ(a|s) = eh(s,a,θ)∑
b∈A eh(s,b,θ) .

Preferences h(s, a,θ) can be computed by linear approximation, with
features, or by a neural network with weights θ. The latter is the ap-
proach used in AlphaGo family.
Soft-max choice is flexible: if the optimal policy is deterministic, optimal
actions will be driven infinitely higher than all suboptimal actions.
Soft-max choice is flexible: can approximate a stochastic policy - not
possible with action-value methods - why?



Value-based and policy-based RL

Value-based
Learnt value function, implicitly defined
policy.

Policy-based
No value function, learnt policy.

Actor-critic
Learnt value function, learnt policy.
Value function used to “criticize”
(improve) the policy.



Why learning a policy

Advantages
Effective in continuous action spaces.
Can learn both stochastic and deterministic policies.
Policy can be a simpler function to approximate.
Choice of policy parameterization: prior knowledge about the desired
form of the policy. Often the most important reason.
Smooth change of action probabilities (ε-greedy policy may change dra-
matically, why?). Thus, better convergence.

Disadvantages
Typically converge to a local rather than global optimum.
Evaluating a policy is typically sample inefficient and high variance.

Example: a game where the optimal policy is stochastic
Rock, Paper, Scissors (Lizard, Spock). A deterministic policy is easily ex-
ploited, the optimal policy is uniform random.



Example

Short gridworld with switched actions
(s, a) are approximated by features x(s, right) = (1, 0) and
x(s, left) = (0, 1) for all s.
ε-greedy action-value methods must choose between two
policies: right or left, with probability 1− ε/2.
With ε = 0.1, πleft achieves less than −82 in S, and πright less
than −44. The optimal policy achieves −11.6.
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How to measure the quality of a policy?

Question
Propose a way to say whether a policy πθ is better or worst than another
πθ′ .

Answer
A policy πθ is better than πθ′ if . . . [YOUR TURN]

Hint: what was the answer to the same question in value-based methods?
The starting point for function approximation methods was choosing a loss
function f : Rd → R to optimize. We chose the Mean Squared Value Error:

f (w) = VE(w) =
∑
s∈S

µπ(s)[vπ(s)− v̂(s,w)]2
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How to measure the quality of a policy?

A natural objective function: the value of starting states
Maximize the start value: J(θ) := vπθ

(s0). Optimization problem. Several
methods avalaible. We use gradient ascent.

Recall the value function definition
Denoting by τ trajectories in the MDP, the value function of a policy π is:

vπ(s0) = E[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s0]
=
∑
τ

Pπ,p(τ = s0, a0, r1, s1, . . . )return(τ)

Question
Given a trajectory τ starting from s0:

τ = s0, a0, r1, s1, a1, r2, . . .

what is its probability Pπ,p(τ)?



Why is computing ∇θ(J) a problem?

Value function definition
Denoting by τ trajectories in the MDP, the value function of a policy π is:

vπ(s0) = E[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s0]
=
∑
τ

Pπ,p(τ = s0, a0, r1, s1, . . . )return(τ)

What happens when π is πθ?
When π = πθ, the probability of τ depends on θ:

Pπθ,p(τ) = πθ(a0|s0)p(s1, r1|s0, a0)πθ(a1|s1)p(s2, r2|s1, a1) · . . .



Why is computing ∇θ(J) a problem?

A distributional point of view
The value function of a policy π can be rewritten as:

vπ(s0) = E[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s0]
=
∑
τ

Pπ,p(τ = s0, a0, r1, s1, . . . )return(τ)

=
∑
s∈S

µπ,s0(s)
∑
a∈A

π(a|s)r(s, a)

=
∑

s∈S,a∈A
µπ,s0(s, a)r(s, a)



1 Learning the policy

2 Objective functions

3 Gradient computation

4 Exercises



Why is computing ∇θ(J) a problem?

Problem
Since the probability of trajectories τ depends on the unknown distribution
model p, we cannot compute exactly the gradient ∇J .

Remark
We don’t need an exact solution! As long as we can estimate the gradient,
we can find a θ close to the maximum, and thus an agent that will do
approximately well.

Question
Propose a strategy to estimate ∇J . Hint: remember that

∇J(θ) = ∇vπθ
(s0) = ∇E[. . . ]

Strategy
Write the gradient ∇J as an expected value E[. . . ] of something that can be
estimated.
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Analytical computation

Example
Consider a simple one-step MDP: every episode starts from a state s0 and
terminates after one time-step, with reward qπθ

(s0, a).

Exercise
Compute the gradient ∇J(θ) of the start value function J(θ) = vπθ

(s0) for
one-step MDP.



Analytical computation

Exercise
Consider a simple one-step MDP: every episode starts from a state s0 and
terminates after one time-step, with reward qπθ

(s0, a). Compute the gradient
∇J(θ).

Solution
The gradient ∇J(θ) of the start value function J(θ) = vπθ

(s0) is given by:

∇J(θ) = ∇
∑

a
πθ(a|s0)qπθ

(s0, a)

=
∑

a
(∇πθ(a|s0)qπθ

(s0, a) + πθ(a|s0)∇qπθ
(s0, a))

=
∑

a
qπθ

(s0, a)∇πθ(a|s0).



Analytical computation

Policy gradient theorem
The gradient ∇J(θ) of the start value function J(θ) = vπθ

(s0) is given by:

∇J(θ) = K
∑

s
µ(s)

∑
a

qπθ
(s, a)∇πθ(a|s)

where the constant K is the average length of episodes, and µ is the on-policy
distribution under πθ.

Proof
Page 325 of Sutton-Barto. Look at this link for details on the last equality.

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html


Use PG Theorem to estimate the gradient

Overall strategy
Write the gradient as an expected value, so that we can sample it.

Question
Can you write ∇J(θ) as an expected value? Something like this:

∇J(θ) ∝
∑

s
µ(s)

∑
a

qπθ
(s, a)∇πθ(a|s)

= E?[?]

Hint
The on-policy distribution µ is a probability distribution.



Use PG Theorem to estimate the gradient

Overall strategy
Write the gradient as an expected value, so that we can sample it.

Answer
Can you write ∇J(θ) as an expected value? Yes!

∇J(θ) ∝
∑

s
µ(s)

∑
a

qπθ
(s, a)∇πθ(a|s)

= Es∼µ[
∑

a
qπθ

(s, a)∇πθ(a|s)]

Can you estimate the above expectation?
The on-policy distribution µ measures how often a state s occurs under the
target policy π: if π is followed, then states will be encountered in µ(s)
proportions (on average). Then. . .



Use PG Theorem to estimate the gradient

Overall strategy
Write the gradient as an expected value that can be sampled by trajecto-
ries.

Answer
By following online trajectories, states will be visited in correct proportions:

∇J(θ) ∝
∑

s
µ(s)

∑
a

qπθ
(s, a)∇πθ(a|s)

= Es∼µ[
∑

a
qπθ

(s, a)∇πθ(a|s)]

= Eτ∼Pπθ,p [
∑

a
qπθ

(St , a)∇πθ(a|St)]



All-actions algorithm

Remark
Every instantiation of the stochastic gradient ascent using:

∇J(θ) ∝
∑

s
µ(s)

∑
a

qπθ
(s, a)∇πθ(a|s)

= Eµ[
∑

a
qπθ

(s, a)∇πθ(a|s)]

gives a Policy Gradient update rule, and a corresponding PG algorithm.

Example
The all-actions PG update rule is:

θt+1 = θt + α
∑

a
q̂(St , a,w)∇π(a|St ,θ).

where q̂ is any estimate of the q-value function qπ of π.



REINFORCE algorithm

Replace
∑

a as an expected value using random actions At :

∇J(θ) = Eτ∼Pπθ,p [
∑

a
qπθ

(St , a)∇πθ(a|St)]

= Eτ∼Pπθ,p

[∑
a
πθ(a|St)qπθ

(St , a)∇πθ(a|St)
πθ(a|St)

]

= Eτ∼Pπθ,p
[
qπθ

(St ,At)∇πθ(At |St)
πθ(At |St)

]
= Eτ∼Pπθ,p

[
Gt
∇πθ(At |St)
πθ(At |St)

]
.

Definition
The REINFORCE update rule is:

θt+1 = θt + αGt
∇πθt (At |St)
πθt (At |St) .



REINFORCE pseudocode

Input: A differentiable policy parametrization πθ(a|s).
Parameter: Step size α > 0.
Initialize: Initialize θ ∈ Rd′ arbitrarily.
do

Generate episode S0,A0,R1, . . . ,ST−1,AT−1,RT following πθ(·|·)
for t = 0, 1, . . . ,T − 1 do

G ←
∑T

k=t+1 γ
k−t−1Rk

θ ← θ + αγtG∇ lnπθ(At |St)
end

while True



REINFORCE example

Stochastic gradient method: good convergence properties.
Expected update over episode: in the same direction as the performance
gradient. Thus, convergence to a local optimum.
Monte Carlo method: high variance and thus slow learning.
To limit the variance, we can use a baseline.



REINFORCE with baseline

Definition
The REINFORCE with baseline update rule is:

θt+1 = θt + α(Gt − b(s))∇πθt (At |St)
πθt (At |St) .



Actor-critic methods: reducing variance using a critic

REINFORCE with baseline is not an AC method
The value function in Gt − v̂(St ,w) is not used for the estimate Gt that will
be used as a target for the policy update. It is not a critic for the policy.

A true AC method
Replace the full return Gt with a one-step return:

θt+1 = θt + α(Gt:t+1 − v̂(St ,w))∇πθt (At |St)
πθt (At |St) .

Generalization
One-step return can be replaced with n-step or λ return. It works.





Summary of policy gradient algorithms

General form of policy gradient
We have several different estimators, sharing a common path:

∇J(θ) = Eτ∼Pπθ,p
[
�
∇πθ(At |St)
πθ(At |St)

]
where � can be:

REINFORCE: � = Gt . Unbiased ⇒ not actor-critic.
q-value actor-critic: � = q(St ,At ,w).
Advantage actor-critic (A2C): � = A(St ,At ,w).
TD(0) actor-critic: � = Rt+1 + γv̂(St+1,w)− v̂(St ,w).
TD(n) actor-critic: � = Gt:t+n − v̂(St ,w).
TD(λ) actor-critic: � = Gλ

t − v̂(St ,w).
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Policy Gradient based model-free Linear Quadratic
Regulator (LQR)

Infinite horizon LQR problem

minimizeE

[
∞∑
t=0

(xT
t Qxt + uT

t Rut)

]
such thatxt+1 = Axt +But, x0 ∼ D, Q,R > 0

For a known model, it is well known that the optimal control solution is

ut = −K∗xt,K
∗ = −(BTPB +R)−1BTPA

whereP = ATPA+Q−ATPB(BTPB +R)−1BTPA

What about the model-free case (when we do not know A,B ?)

Many recent studies: we will focus on Fazel et al, Global Convergence of
Policy Gradient Methods for the LQR, ICML 2018
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Policy Gradient based model-free Linear Quadratic
Regulator (LQR )

For a generic control law ut = −Kxt, define

C(K) = Ex0∼D

[
∞∑
t=0

(xT
t Qxt + uT

t Rut)

]

Standard Policy Gradient

Ki+1 = Ki − η∇C(K), ∇C(K) = 2(R+BTPKB)K −BTPkA)ΣK ,

Pk = Q+KTRK + (A−BK)TPk(A−BK), ΣK = Ex0∼D

∞∑
t=0

xtx
T
t

Interestingly, C(K) turns out to be non-convex in K, and yet a globally
optimal solution exists and can be found.
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Policy Gradient based model-free Linear Quadratic
Regulator (LQR )

A better alternative: Natural Policy Gradient (NPG)

Assuming a parametrized policy πθ(ut|xt),

θi+1 = θi − ηG−1
θi

∇C(θi), Gθ = E

[
∞∑
t=0

∇πθ(ut|xt)∇πθ(ut|xt)
T

]
For the LQR problem choose π(ut|xt) = N (−Kx, σ2I) (why noisy
policy?)

NPG Update:
Ki+1 = Ki − η∇C(Ki)ΣKi

−1

For model free case, one needs to estimate the Fisher information matrix
GK and the gradient of C(K)

For the model based scenario, one can show that the NPG enjoys linear
convergence (exponentially decaying error norm ||Ki −K∗||) for a
well-chosen stepsize η

For the model-free case with estimated gradients from samples, one can
establish similar behaviour with high probability under suitably large
sample size
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