
SIDRA - Summer School 2025 

An Introduction to Stochastic Control and Reinforcement Learning - Homework assignments 

Please address the two assignments outlined below and provide a brief report (indicatively 2–3 pages). 
Assignment 1 also requires a MATLAB implementation. Please provide also the corresponding code and, if 
needed, a brief explanation of how to run it. 

Assignment 1 

Consider a mobile agent that moves on an n×m planar grid (think of a chessboard with (1,1) denoting the 

bottom- left- most cell). At each time step, the robot is located in a cell and decides whether to move upward, 

downward, to the right, or to the left in the next time step. The goal is to design a learning scheme such that 

the agent repeatedly moves from cell (1,1) to cell (n,m) and vice versa (i.e., once (n,m) is reached, the goal 

becomes reaching (1,1), and so forth and so on), avoiding collisions with the "walls" of the grid and refraining 

from traversing certain cells. These cells  which are unknown beforehand, represent immovable obstacles 

that are revealed during exploration.  

Introduce a proper Markov Decision Process (MDP) that describes the problem at hand (defines clearly the 

states, the control actions, and the transitions) and introduce appropriate losses associated to the transitions. 

Then, implement in MATLAB a program that receives as input the grid size (n,m) and the cells that are 

forbidden and then run a simulation of the MDP along with a RL algorithm to learn the optimal policy from 

experience. You may try one or two RL algorithm (e.g. SARSA+(policy iteration), Q-learning, or Policy 

Gradient). Provide a brief description of the MDP formulation and the code as MATLAB files. 

Assignment 2 

Given a finite-state finite-control action Markov Decision Process, consider an infinite horizon optimal control 

problem where the total cost is defined as 

J(𝑥, {𝑢𝑡}) = E [∑ α(𝑡) ∙ 𝑔(𝑥𝑡 , 𝑢𝑡, 𝑤𝑡)

+∞

𝑡=0

], 

and: 1. 𝑥𝑡 ∈ 𝑋 = {1,2, … , 𝑛} is the state and 𝑥0 = 𝑥 ∈ 𝑋 is the initialization; 2. 𝑢𝑡 ∈ 𝑈 is the control action; 

3. 𝑔(𝑥𝑡 , 𝑢𝑡, 𝑤𝑡) is the (bounded) cost generated at every transition (𝑤𝑡 is the exogenous stochastic input 

driving the state evolution); 4. and 

𝛼(𝑡) = {
𝛾𝑡              if 𝑡 is even

𝛾𝑡−1        if 𝑡 is odd
 

(assume that 0 < 𝛾 < 1). Moreover, 𝑥𝑡 is only observed when 𝑡 is even and this information is used to decide 

both 𝑢𝑡 and 𝑢𝑡+1. In other words, 

𝑢𝑡 = {
𝜇𝑡(𝑥𝑡)          if 𝑡 is even
𝜇𝑡(𝑥𝑡−1)        if 𝑡 is odd

 

 

where 𝜋 = {𝜇0, 𝜇1, 𝜇2 … } is a policy. For the present problem, letting 

𝑉∗(𝑥)  =  min𝜋 𝐽(𝑥, {𝜇𝑡(𝑥𝑡)})  

be the value function, the Bellman functional equation becomes (𝑝(𝑖|𝑗, 𝑢), 𝑖, 𝑗 ∈ 𝑋, 𝑢 ∈ 𝑈, denotes a 

transition probability): 

  



𝑉∗(𝑥) = min𝑢,𝑣∈𝑈 [𝐸[𝑔(𝑥, 𝑢, 𝑤0)] + ∑ 𝑝(𝑖|𝑥, 𝑢) ∙ 𝐸[𝑔(𝑖, 𝑣, 𝑤1)]

𝑛

𝑖=1

+ 𝛾2 ∑ 𝑝(𝑖|𝑥, 𝑢) ∙ 𝑝(𝑗|𝑖, 𝑣) ∙ 𝑉∗(𝑗)

𝑛

𝑖,𝑗=1

]. 

 
i. Explain why the Bellman functional equation takes the form above (note: a complete formal proof is 
not required, give ideas instead). 

ii. Introduce a modified Q-learning algorithm and the corresponding learning scheme that 
accommodates the present setup. 


