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Descent algorithms

Consider the following optimization problem

min f(z), f:R" =R, f convex, twice differentiable

Iterative algorithms:
Tht1 = Tk + Ay

® (y step-size;

o Aux;, descent direction, that is, Vf(xk)TAxk <0 (ifzy is not a minimizer, i.e., V f(x) # 0)

o must be chosen in such a way

fl@ry1) — flxe) <0 descent condition
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Descent algorithms

Gradient method :
Aok ==V[(ee) = wnn=on— V()

Observe that Vf(xk)TAxk = —|IVf(x)||*? <0 (if zx is not a minimizer, i.e., V f(x1) #0)
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Descent algorithms

Gradient method :
Aok ==V[(ee) = wnn=on— V()

Observe that Vf(xk)TAxk = —|IVf(x)||*? <0 (if zx is not a minimizer, i.e., V f(x1) #0)

Newton-Raphson method :

ALL’k = — (VQf(xk))_l Vf(:l:k) —— Tk+1 = T — Qg (VQf(xk))_l Vf(xk)

Observe that V f(zx) Az = —Vf(zx) (V2f(x1)) ' Vf(zx) <O (ifax is not a minimizer, ie.,
Vf(zk) #0)

Prof. R. Carli @ Control Tools for Distributed Optimization e Optimization and distributed algorithms 4 |91



Today : gradient method

In this set of slides we will focus on gradient method for unconstrained problems and we will assume the
function is differentiable.

Question :

What to do if f is not differentiable?

Remark : Methods for nondifferentiable or constrained problems

subgradient method
proximal gradient method
smoothing methods

cutting-plane method
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Monotone operator

Consider a (finite-dimensional) operator T': R™ — R™ and let us introduce the following definitions

Definition. An operator T : R™ — R" is monotone if for all z4,zp it holds

(T(za) —T(xp)) (x4 —28) >0

Remark. Informally, a monotone operator preserves the sign (in the scalar case at least) of its input increment

If 4 — xp is negative (positive), then T(xz4) — T'(z) stays negative (positive)
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Strongly monotone operators

Definition. An operator T': R™ — R" is strongly monotone if for all x4, xp it holds
(T(za) = T(xp)) (wa —ap) > pllva — =5

for some > 0

Remark. A p-strongly monotone operator is also called p-coercive.
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Lipschitz continuous operators

Definition. An operator T': R" — R" is Lipschitz continuous if for all x4, xp it holds
[T(za) = T(xp)|| < Lljza — =5l

for some L >0

Remark. For L = 1, the operator T is said to be nonexpansive, whereas for L < 1, the operator T is called a
contraction (with contraction factor L)
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Co-coercive operators

Definition. An operator T': R™ — R" is co-coercive with factor % if for all z4,zp it holds

(T(za) = T(zp))" (wa —a5) > %IIT(:BA) —T(z5)|”
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Convexity

Definition. A set X C R"™ is convex if for any two points z4, 25 € X and for all 6 € [0, 1], it holds

QJEA+(1—(9).TB cX
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Convex functions

Definition. Let X C R™ be a convex set. A function f: X — R is convex if for any two points z4,z5 € X
and for all 6 € [0, 1], it holds

fOza+ (1 —0)xp) <O0f(xa)+ (1—0)f(zp)

(also known as Jensen’s inequality)

First order condition. If f : X — R is convex and differentiable, then for any two points z4,xp € X it holds

f(xB) > f(za) + V(za) (x5 —2a)

f(zB)
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Convex functions

Definition. Let X C R™ be a convex set. A function f: X — R is convex if for any two points z4,z5 € X
and for all 6 € [0, 1], it holds

fOza+ (1 —0)xp) <O0f(xa)+ (1—0)f(zp)

(also known as Jensen’s inequality)
First order condition. If f: X — R is convex and differentiable, then for any two points x4,z € X it holds

f(xB) > f(za) + V(za) (x5 —2a)

Second order condition. For twice differentiable function, V2 f(x) > 0 for all x
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Strongly convex smooth functions

Definition. A differentiable function f : R™ — R is strongly convex with parameter p > 0 if for all
za,zp € R™ it holds

fep) > f(xa) + Vf(za)' (xp —za) + 4llop — x4

f(zm)
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Characterization of gradient operator

Definition. A differentiable function f : R™ — R is L-smooth if its gradient is L-Lipschitz continuous, that is,
if for all z4,zp € R", it holds

[Vf(za) =V (@)l < Lllzs — zall
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Characterization of gradient operator

Definition. A differentiable function f : R™ — R is L-smooth if its gradient is L-Lipschitz continuous, that is,
if for all z4,zp € R", it holds

[Vf(za) =V (@)l < Lllzs — zall

Proposition. A differentiable function f : R™ — R having a
Lipschitz continuous gradient with parameter L > 0 (i.e., f
is L-smooth) satisfies for all za,2p5 € R? the inequality

f@p) < f(ma) + Vf(za) (x5 — 24) + Zllzn — 24
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Characterization of gradient operator

Proposition Let f : R — R be L-smooth and let
T =z —aVfe,

for some 0 < o < +. Then,

f@®) < J(@) = SV @)
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Characterizations of the gradient operator

Property A differentiable function f : R™ — R is convex if and only if
(Vf(@a) = Vf(zp)' (wa —28) >0,

for all x4, xR, i.e., the gradient mapping Vf : R™ — R" is a monotone mapping.

Property If f is convex, differentiable and L-smooth (i.e., V f is L- Lipschitz continuous) then Vf is
co-coercive, i.e., for all x4,z € R™ it holds

(Vf(@a) = Vf(@p) (va —25) 2 LIV f(2a) = V(2]
Property If f is u strongly convex, differentiable and L-smooth (i.e., Vf is L- Lipschitz continuous) then V f
is co-coercive, i.e., for all x4, zp € R™ it holds

(Vf(@a) = Vi@s) (wa —ap) =2 A7V f(@a) = Viep)| + 25 lea — 25
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Characterizations of the gradient operator

It is equivalent to imposing upper and lower bounds on the gradient operator norm - sector bound

plza —zsl < IVf(za) = Vf(z)l < Lllza — 25

V()
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Properties of gradient operator

The cost function f is The gradient operator Vf is
® convex e monotone
e strongly convex e strongly monotone
e convex and has Lipschitz continuous gradient e co-coercive
e strongly convex and has Lipschitz continuous gradient e co-coercive with a slope-restricted factor
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Unconstrained optimization

Consider the unconstrained optimization problem

min f(z)

with f: R™ — R having a L-Lipschitz continuous gradient

A minimum z, € R" of the problem must satisfy the (necessary) optimality condition given by

Vf(ze) =0n

Remark. If, additionally, f is convex, the optimality condition is also sufficient
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Unconstrained convex optimization

From now on, consider the unconstrained optimization problem

min f(z)

with f : R™ — R being p-strongly convex and having a L-Lipschitz continuous gradient (it holds L > u)
Then, for all z, it holds

(Vi) = V@) (& —2.) > 27| V(@) = V@)l + 25z — . > 0
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The gradient method

The gradient method is an iterative first-order optimization algorithm given by

LTk+1 = Tk — QUL
Yk = Tk

ur = Vf(yx)

with a > 0 being the so-called stepsize, while the initial condition zo € R™ is arbitrary

The (unique) equilibrium z.q € R™ of the system is the (unique) minimum z, of the optimization problem

Uk Tk+4+1 = T — QUE Yk
Yk = Tk
up = V f(yr)
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Convergence result for the gradient method

Theorem. If f is strongly convex and has a Lipschitz continuous gradient, then the sequence of solution
estimates {zx }rxen generated by the gradient method with a sufficiently small, constant stepsize a > 0
converges to the optimal solution x, of the problem at a linear rate, i.e.,

ok — 2] < Mp"

with p € (0,1) and M > 0 depending on (i, L) and ||2° — z]|
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The gradient method in error coordinates

Let z, be the (unique) optimal solution/equilibrium and introduce the error coordinates
TH—— T =T — Ty

By shifting the input and the output as

ur— 4 =u— Vf(z.) g Tpa1 = T — oy Tk

Yr— Y=y — Ty Uk = Tk

the resulting error dynamics is

G = V(G +x+) — V(2)

:i‘k+1 = jk — Oé’&k

Yk = Tk
U = V(g + ) — Vf(zs)
The convergence analysis amounts to studying the stability properties of the origin & = 0,,

Remark. With these symbols, we can write i, g > oz lawl® + u‘fTLLHg}le
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The gradient method in error coordinates

Let z, be the (unique) optimal solution/equilibrium and introduce the error coordinates
TH—— T =T — Ty
By shifting the input and the output as

ur— @ =u—Vf(z) Remember: If f is p- strongly convex and has L-

Yyr—yi=y — o Lipschitz continuous gradient then
the resulting error dynamics is (Vf(z)— Vf(;c*))T(x —x,) >
:i‘k+1 = T — QU ﬁ”vf( ) Vf(l’*)H + ,_LJFLHx_:L,*” >0
Yk = Tg

Uk = Vf(ir +2+) — VI(zs)

The convergence analysis amounts to studying the stability properties of the origin & = 0,,

Remark. With these symbols, we can write @ §1, > -7 [|ax]® + 25 |7k 1
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Convergence proof

Consider a Lyapunov function V(%) = ||#||?, then its increment
along trajectories of the gradient method satisfies

U, Tpy1 = T — Qg Yk

V(#kg1) — V(@) = |Fxra]® — |2 > B =
Yk = Tk

—2aiy) & + ||k |®

IN

—2am |1 ]1* + ala — 272) |l

Uy = VI(Gr +x+) = VI(zs)

with Y1 = L and Yo =

1
p+L p+L

For a small enough stepsize « (i.e., @ < 272), we can write
V(i) - V@) < —20mV(@) = [Feal? < (1— 2073
< (1= 2am)"[o]?
Therefore {Zx }ken goes exponentially/geometrically fast to zero
Remark. Imposing o < 22 implies that (1 — 2ay1) € (0,1)
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Explicit convergence rate

The convergence rate corresponding to the largest feasible stepsize o, namely for

2

OZIQ’YQZW

is given by

Therefore, we can write

2k
@l < (£52) " llzoll
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Optimization over networks

e G = (V,&) undirected .
e fi:R — R, local function known only by node i / \ f

N
miani(m) / /

\

Goal : to design distributed and scalable algorithms / \./ \ /
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From optimization over networks to consensus optimization

e G = (V,&) undirected .

e fi:R — R, local function known only by node 4 / \
Xi
N
PUNDE
min Z fi(x) . .

e x; : local copy of x stored in memory by node ¢ / \ / \ /

st. zr1=...=xN

consensus constraint

e The two problems are equivalent
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From optimization over networks to consensus optimization

e G = (V,&) undirected .
e fi:R — R, local function known only by node / \
Xi

N
min y fi(x) / /

va

e x; : local copy of = stored in memory by node ¢ / \ / \ /

N
=1

l‘l,,ZNZ
st. ¢y =x; A (7,7]) e

consensus constraint

e The two problems are equivalent if the graph G is
connected
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Elements of Graph Theory

Directed Graph G = (V,€) ].
e U : set of nodes ) / \
V={1,2,...,N} 1
e £ECV xV : set of edges

(i,7) : edge getting out from the node i and getting in / \ / \

the node j

Node ¢ can send information to node j . . .
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Elements of Graph Theory

Directed Graph G = (V&)

e V : set of nodes
V={1,2,...,N}

e £ECV xV : set of edges
(i,7) : edge getting out from the node i and getting in
the node j
Node ¢ can send information to node j

e (i,1) self-loop
We typically assume that the self-loops are present though
not drawn
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Elements of Graph Theory

Directed Graph G = (V,€)

e V : set of nodes
V={1,2,...,N}

o £CV xV : set of nodes
(i,7) : edge getting out from the node i and getting in
the node j
Node ¢ can send information to node j

e (i,1) self-loop
We typically assume that the self-loops are present though
not drawn

N =1{jl(4,4) € £} in - neighbors
(nodes transmitting information to node i)
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Elements of Graph Theory

Directed Graph G = (V,€)

e V : set of nodes
V={1,2,...,N}

o £CV xV : set of nodes
(i,7) : edge getting out from the node i and getting in
the node j
Node ¢ can send information to node j

e (i,1) self-loop
We typically assume that the self-loops are present though
not drawn

N =1{jl(4,4) € £} in - neighbors
(nodes transmitting information to node i)

Néwe = {4§l(G,5) € E}  out - neighbors
(nodes receiveing information from node i)
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Elements of Graph Theory

Undirected Graph G = (V, &) : if (i,j) € € then also (j,4) € €

Hence Vi = N = N; /
\

Degree of node i : d; = |Nj|
.<—> @

—e
\
o
/\/ /\
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Elements of Graph Theory

Undirected Graph G = (V, &) : if (i,j) € € then also (j,4) € €

Hence N = NV, = N; /

Degree of node i : d; = |Nj|

Adjacency matrix A /

i . .<_>.
[A]ij:{l f (i,5) € €

—@
\
, @
0 otherwise /\ / /
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Elements of Graph Theory

Undirected Graph G = (V, &) : if (i,j) € € then also (j,4) € €

Hence N = NV, = N; /

Degree of node i : d; = |Nj|

Adjacency matrix A /

i . .<_>.
[A]ij:{l f (i,5) € €

0 otherwise /\ /

Degree matrix D

D = diag{d;}

—@
\
©

%
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Elements of Graph Theory

Undirected Graph G = (V&) : if (i,j) € € then also (j ** ~ €

Hence N = NV, = N; /

Degree of node i : d; = |Nj|

Adjacency matrix A /

i . .<_>.
[A]ij:{l f (i,5) € €

0 otherwise /\ /

Degree matrix D

D = diag{d;}

—@
\
©

%

Laplacian matrix L

L=D-A
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Elements of Graph Theory

Definition. A directed graph is said to be strongly connected i/ \
if, given any pair of vertices 7 and j, ¢ is connected with j ® o
that is, there exists a direct path connecting i to j / »\ / \

Definition. A undirected graph is said to be connected if,
given any pair of vertices 7 and j, ¢ is connected with j

that is, there exists a undirect path connecting i to j
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Recursive distributed algorithms consistent with a graph

Undirected Graph G = (V&)

Definition. A recursive distributed algorithmis said to

be consistent with the graph G if the i-th node's .
update law depends only on the local variables of ¢ and / ’\
its neighbors, i.e.,

i1 = s (xi,k, {zintjen, ’k) / \ / \
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Consensus Problem

Definition. A recursive distributed algorithm consistent with
the graph G = (V, €) is said to asymptotically achieve
consensus if

Tik —

for all 7 € V, for some a € R.

0 10 20 30 40
Consensus Iteration

Definition. A recursive distributed algorithm consistent with
the graph G = (V, €) is said to asymptotically achieve
average consensus if

N
1 "
Tik — 7N E ;.0
j=1

forallie V.

0 10 20 30 40
Consensus Iteration
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Average Consensus Problem : formulation

e G = (V,&) undirected vy
e State of node i is initialized with value v;, i.e., / .\
v V2
Ti0 = U 3. — .

e Goal : to compute the average of initial values, i.e e / \ / \ Uy
. o<——>o\ /o
1 v
2w NG NN
i=1
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Consensus Algorithm

121
Algorithm:

Ti,0 = V4 U3 / \ V2

Fr At
JEN; ve 4

where f \ /?& /.\
° ZjENiUJij::l, wi; >0 [ )

(convex combination);

Tik+1

o N;={j|(i,j) € E} (distributed algorithm)
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Consensus Algorithm

121
Algorithm:

Ti0 = Vi vi.e:ii——j:§i'v2
“Fr A At
JEN; ve 4
where f \ /?& /.\
® D ien, wij =1, wi; >0 [ )

(convex combination);

Tik+1

o N;={j|(i,j) € E} (distributed algorithm)

Observations:
e w;; # 0 onlyif (i,5) € &;
o |If (Z,j) ¢ & then w;; = 0.

N
As a consequence Y jen, Wij = > = wii =1
f =
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Consensus Algorithm

Algorithm:

V1

Ti0 = Vi / \
i = E Wij Tj.k .

o——

JEN; \
v6 / \ /
Vector form .\
Let z = [z1,...,xn]" and v = [v1,...,vn]" then f\ /vs /

.4’7.

Tr+1 = Wa, To =V v
7

Vo

where W is row stochastic (nonnegative matrix with sum
of elements along each row equal to 1)

N
o Y wy =1
® Wij 2 0.
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Consensus Algorithm

Algorithm:

Ti0 = Vi / \
= - V3 .Vz
Z Wij Tj,k o
JEN; / \
Vg \ / .'74
Vector form .\
Letx:[xl,...,xN]T andU:[’Dl,-..,UN]T then f\ /VS ./ \

Tr+1 = Wa, To =V

where W is row stochastic (nonnegative matrix with sum
of elements along each row equal to 1)

1
Wi=1, 1=
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Average Consensus Algorithm

Algorithm:
Try1 = Wag, To ="V

V3 / \ V2

where W is doubly stochastic, that is, /.\ / \
e W1 =1 (row stochastic) Ve Vi

T T : @— 4
e 1'W =1" (column stochastic) f \ / e / \

o

Properties vy

e Column stochastic = mass preservation
T T T
1 241 =1 Wxr=1 zr=... =20
. . N
e Consensus (limg—oo Tx = al) + mass preservation = average consensus (@ = >, Vi)
T _ 4T N _ 1N
Indeed, 1 'z(c0) =Na=1zo=),_ vi > a= 2, 40
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Consensus conditions

Algorithm:

Tr4+1 = Wag, To =V

where W is row stochastic .

@o— [ )
Question : When is consensus achieved? f \ / e / \
[ J

Answer : When W is primitive

Remark. If W doubly stochastic 4+ primitive then

average consensus.
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Consensus conditions

When a row stochastic matrix W is primitive?
e eigenvalue 1 (W1 =1) is simple.

e all the other eigenvalues are strictly inside the unitary circle.
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Graph conditions for average consensus

When a doubly stochastic matrix W is primitive?
e eigenvalue 1 (W1 = 1) is simple.

e all the other eigenvalues are strictly inside the unitary circle.

Graph-based conditions for average consensus?

Given a matrix W we can associate a graph Gw (V, Ew) such that

if wi; # 0 then (j,i) € Ew (otherwise (j,i) ¢ Ew )

Proposition. Let W be a doubly stochastic matrix. If the following two conditions
e wi; 0 forallieV,;
e &y is strongly connected.

are satisfied then W is primitive and, hence, average consensus is achieved.
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General consensus (not just average)

What about if W is row stochastic, primitive, but not column stochastic?
We have consensus, that is,

zi(t) = « Y 1, component-wise

z(t) = al vector-form

but, in general,
L XN
a# N Zvi
i=1
Since W is not column stochastic (1" W # 17), mass is not preserved

].Tl'kJrl # lT.’L‘k, lTCL‘k # lTl‘o
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General consensus (not just average)

What about if W is row stochastic, primitive, but not column stochastic?
e eigenvalue 1 (W1 = 1) is simple.
e all the other eigenvalues are strictly inside the unitary circle.
Let \;,2=1,..., N be the i-th eigenvalue and let
o v be the corresponding right eigenvector;
o w be the corresponding left eigenvector.

e M =1, v®M =1, w® >0 — we assume Zi\;l wgl) =1.
N D N N nT T
W = Z Nv D@ = Wwh = Z )\fvmw(l) = W* s 1w®
i=1 i=1
Hence

k— oo

N
z(c0) = lim Wk = lw(1>Two = (w(l)TIO) 1= <Z wgl)dii,()) 1.
i=1
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Going back to average consensus

W is doubly stochastic
1 1
1"w=1"=wV ==-1=>w'— =117
v N N

and, hence,

N
1 T 1
w(00) = Jim Wao = 11Tap = () a0) 1= (Z f”°> "
=1
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How to build doubly stochastic matrices?

Undirected Graph G = (V&) .

Ni={jeV: (ij) €&} / %
—

Degree of node i : d; = |N;| /.\ /.\

Maximum degree weight .‘_’ . .

Let d > max; d; /\ / \ /

2 if(ij)eEandi#j o— —@
Wij = 0 if (i,7) ¢ &
1— Fi ifi=j
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How to build doubly stochastic matrices?

Undirected Graph G = (V&) .

Ni={jeV:(ije&} / \
Cdi— N @
Degree of node i : d; = |Nj] / \ / \

Metropolis weights .‘_’ . .

1 . .. . .
Trmax{did; if (i,j) €€ andi#j ..___.. .\.
o 0 i (i,9) ¢
1= Zszl,kyéi Wik ifi=j
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How to build doubly stochastic matrices?

Undirected Graph G = (V&)
Ni={jeV:(ij e}

Degree of node i : d; = |Nj]

Laplacian - based method

Let € > 0 be such that

€<
max; d;

Define
W =1-—¢€L

—> W is doubly stochastic, and, if G is connected, primitive.

To remember...

Adjacency matrix A

o 1 if (i,7) € €
[Al:; _{ 0 otherwise

Degree matrix D
D = diag{d;}
Laplacian matrix L

L=D-A
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Rate of convergence?

W is row stochastic, primitive.
e eigenvalue 1 (W1 = 1) is simple.

e all the other eigenvalues are strictly inside the unitary circle.

Pess : essential spectral radius
pess - norm of the largest eigenvalue in modulus different from 1

pess = max {|A| : X eigenvalue of W, X\ # 1}
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Rate of convergence?

W is row stochastic, primitive.
e eigenvalue 1 (W1 = 1) is simple.

e all the other eigenvalues are strictly inside the unitary circle.

Pess : essential spectral radius
pess - norm of the largest eigenvalue in modulus different from 1

pess = max {|A| : X eigenvalue of W, X\ # 1}

We have that

l|zr — al|| < Cpks, o consensus value
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Rate of convergence : examples

pess = {|A| : X eigenvalue of W, \ # 1}

Complete graph : pess =0

1IN - 1/N
W=—11"=] : L=
1N - 1/N

Average Consensus is reached in one step (dead-beat)
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Rate of convergence : examples

pess = {|A| : X eigenvalue of W, \ # 1}

Circle graph : pes =1 — %

101 1
5 3 0 0 0 3
3 3 3 0 0 0
SO
w=|0 3 3 3 0 0
1 11
3 9 003 3
Nlim Pess = 1 — the greater the number of agents the slower the algorithm
— 00
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Rate of convergence : examples

pess = {|A| : X eigenvalue of W, X\ # 1}

2D Toreus graph : pess =1 — %
Again
Jim_pec =1

the greater the number of agents the slower the algorithm

Observations.
e A bit better than circle graph

e Similar behavior for 3D toreus and d-dimensional toruses
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Rate of convergence : examples

pess = max {|A| : A eigenvalue of W, X # 1}

Random geometric graph.
e Place N nodes within a square of side L

e Connect two nodes if their distance is
smaller than R

Behavior similar to that of 2-dimensional
toruses

C
pesszl_*

N
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Rate of convergence : examples

Pess = {|A| : X eigenvalue of W, \ # 1}
Cayley graphs : graphs with particular symmetries (e.g., toruses) where each node has the same number of
neighbors, say v

Cayley graphs : pess > 1 — -
Nv
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Rate of convergence : examples

Pess = {|A| : X eigenvalue of W, \ # 1}

Cayley graphs : graphs with particular symmetries (e.g., toruses) where each node has the same number of
neighbors, say v

C
2
Nv

Cayley graphs : pess > 1 —

Questions:

e |s it the symmetry-structure on the graph that prevents achieving good performance?

e Or, is it the fact that each node communicates with a limited number of neighbors?
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Rate of convergence : regular graphs

Regular graphs : graphs where each node is connected to the same number of neighbors
e Consider the set of connected regular graphs with degree v;

e Build the set of corresponding primitive doubly stochastic matrices (Metropolis weights)

2y —1

v

= Elpess(W)] =

Remark. As a consequence, we have that, if we fix v, in the average, pess will stay bounded away from 1, as
N — oo
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Ramanujan graphs

Ramanujan graphs are those graphs for which we have exactly

2v/v —1

pess(W) = —

There are plenty of Ramanujan graphs but it is not still clear if for any pair (N, v) there exists a Ramanujan
graph with N vertices and degree v

Srinivasa Ramanujan (1887-1920) was an Indian
mathematician particularly known for his contributions
number theory.
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Adding a slot of memory

Let W be a primitive symmetric doubly stochastic matrix and let
Ti+1 = Wy,

be the corresponding consensus algorithm.

Assume W is built over a family of connected graphs of increasing size such that

pess(Wn) =1— f(N) where Jégn f(N)=0

Second-order consensus algorithm

Trtr1 = aWaxp + (1 — a)xp—1 l<a<?, vector form
N
Tiktl = Q Z Wik + (1 — @)z p—1 component-wise
j=1

If x_1 = 0 then mass is preserved
- 1Txk+1 = 1Ta:k
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Adding a slot of memory

Second-order consensus algorithm
Tht1 | _ | oW (A1 —a)] Tk
Tk o I 0 Tk—1
Proposition Given W symmetric, primitive, doubly stochastic, with

pess(W) = 1= f(N),

there exists (W), 1 < a < 2, such that the convergence rate of the augmented scheme is

Pess, aug(W) =1- f(N)

Observation: Notice that \/f(N) > f(N) when f(N) < 1.
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Adding a slot of memory

Second-order consensus algorithm
|:£Z»’k+1:|:|:aW (1—a)1}[ Tk }7 l<a<?

Tk

For future use...
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Dynamic average consensus

Consider the set of time-varying signals {r; ;}
e signal r; 1 is observed by node i;

e x; 1 is the internal state of node ¢;

Goal : to track the time-varying average 7, = % Zf\;l ri,k, that is,

Tip —> Tk
Algorithm : W doubly stochastic matrix
N
Tik+1 = E WijTjk + Tik+1 — Tik
j=1
T
Tyl = Wac(k:) + Tk+1 — Tk, T = [7’1’}9 T2k - TN,k}
Initialization : zo = ro N Mass Preservation : 17z, = 177,
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Outline

e Descent algorithms (Gradient/ Newton-Raphson)

e On Operators (monotone, strongly monotone, Lipschitz continuous, Co-coercive)
e Convex set, convex and strongly convex functions

e Properties of the gradient operator

e Gradient algorithm

e Consensus Optimization over networks

e Elements of Graph Theory

e Consensus algorithms

e Distributed Gradient Descent

e Distributed Gradient Tracking
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Distributed gradient descent

G = (V, ) undirected .
e fi:R — R, local function known only by node i / \ f

f(@) :—Z_ﬁ_vjlfmx) / \ /\

e Goal: o—© ©

min f(z) ./ \. / \ /

N
Thel = Tk — O Z V fi(zk)

=1

Gradient algorithm:
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Distributed gradient descent

e G = (V,&) undirected .
e fi:R — R, local function known only by node i / \
e x; : local copy of x stored in memory by node 4 . 4_——-*. fi
N
i D H@) /\ / \
s.t. xI:l..‘:xN .<_>. .
consensus constraint / \ / \ /
e x=I[z1,...,ZN] .M. .\.
e Idea ?
N L X
Tht+1 = Tk—Qk ; V fi(zk) — Tik+1 = Tipe—ak N (N ;vfz(xzk)>
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Distributed gradient descent

Assumtpion

f3 fa
e the graph is complete
e the local states are initialized all equal, that is,
.TI,OZ---:-TN,O:i in fi
A prototype for Distributed Gradient Descent is
X
Tiktl = Tik — ax N (N z; sz‘@z)k))
= f5 fo
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Distributed gradient descent

Assumtpion

f3 fa
e the graph is complete
e the local states are initialized all equal, that is,
.TI,OZ---:-TN,OZi in fi
A prototype for Distributed Gradient Descent is
| XN
Tiktl = Tik — ax N (N z; Vfi(l‘z‘,k)>
= f5 fe

can be computed in one step since the graph is complete
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Distributed gradient descent s .

Let zx = [ka, e 7$N’k]T then
Trt1 = 2 — WV f(xx) fi h
where
® T = [T1k,---s TNk
o Vi(xk) = [Vhi(xik),. . . Vin(@ne)]
/N - 1/N fs f
e W=111"= : : =J
/N -+ 1/N
We have

1
Thy1 =T — o N (NlTVf($k)) 1
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Distributed gradient descent s .
Let B, = £17Vf(zx) then

T1,k+1 X1,k B fa fi

TN k+1 TN,k Bk

Since x;,0 = Z for all 4 then
s fo

l‘l’k:...:IN,k, Vk

and
T,k = ... = TNk — Tx
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owards a distributed gradient descent algorithm

Question: What about if the initial conditions are not s
exactly the same?

T1,k+1 Z1,k Br
= . —aN .

TN k+1 TN,k Bk

Trajectories are parallel

Thy1 =Tk — a Pl W
200 300 400 500

Tteration
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Towards a distributed gradient descent algorithm

Idea: average consensus also over the states

Tet1 = Jzk — aJ Vf(zr), J = %11-r

=J(zx —aVf(zk))
Then, again,

Tik =...= TNk, Vk>0
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Towards a distributed gradient descent algorithm

Other question : what about if the graph is not complete? fs fa

Idea : we use a doubly stochastic matrix built over the
graph (we substitute J with W)

fa fi
Tk+1 = Wl’k — OékW Vf(l‘k)

=W (2 — o, Vf(r))

Or, alternatively
Tit1 = War — aV f(zk) fs fs

consensus only on the states and not on the gradients -
privacy reasons

Tikt+1 = E Wi Tk — oV fi(Tik) component — wise
JEN;
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Distributed gradient descent algorithm

Question: Is this algorithm converging? fs fa
Tigt1 = Z Wi Tk — oV fi(Ti k)
JEN;
Assumption : «y is constant, that is, ax = « for all k s f
(step-size constant) : !
fs fe
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Distributed gradient descent algorithm

Question: Is this algorithm converging? fs fa

Tiktl = Z Wi Tk — oV fi(xik)
JEN;

Assumption : «ay is constant, that is, ax = « for all k
(step-size constant)

*

Observation : x* is not a fixed point
Indeed

x = Z wijz" — oV fi(x™) 7
JEN;
¥ =" —apVfi(z*)? No! In general 0 # V f;(z")

f5 fe
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Distributed gradient descent algorithm

Question: Is this algorithm converging? 3
Ti k1 = Z wijxj e — eV fi(Tix)
JEN;

Assumption : oy is constant, that is, ax = « for all k
(step-size constant)

Nodes states

Result : If « satisfies

1 + Amin (W)

a < I

then z(t) converges to a neighborhood of .1 but, in ° 500 1000 1900

general, not x.1 itself.
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Distributed gradient descent algorithm

Question:Why doesn't this algorithm reach .7 *

e we have already seen that z.1 is not a fixed point for
the updating rule 20l

e anti-consensus push behavior; if x; 0 = Z then w0l

Nodes states

Ti1 = g wi; T — aV fi(Z) 60 |- Sy
jENi -80
=z —aVfi(z)
-100
It holds 120 | | ‘ ‘
0 1000 2000 3000 4000 5000

Tteration

Tig = ;1 & Vfi(@) =Vf@)
e the DGD algorithm solves the following regularized

problem

Tl TN 2

N
min aZﬁ(m) + le(I - W)z
i=1
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Distributed gradient descent algorithm

Question:time-varying step size ay?

Tikt1 = Y Wik — axVfi(wi)
JEN;

Result : let {aw},—,, ar > 0, be such that

oo [eo]

2
E ap = 00 and E ap < 00
k=0 k=0

then

lim xp = z.1
k— o0
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Distributed gradient descent algorithm

Question:time-varying step size ax?

Tikt1 = Z wiiTik — KV fi(Tik) \

JEN;

Result : let {aw},—,, ar > 0, be such that

oo [eo]

2
E ap = 00 and E ap < 00
k=0 k=0

then Linear

lim xp = z.1
k— o0

Sub Linear

Remark : sub-linear rate

How to obtain linear rate? : Gradient tracking, Distributed ADMM
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Outline

e Descent algorithms (Gradient/ Newton-Raphson)

e On Operators (monotone, strongly monotone, Lipschitz continuous, Co-coercive)
e Convex set, convex and strongly convex functions

e Properties of the gradient operator

e Gradient algorithm

e Consensus Optimization over networks

e Elements of Graph Theory

e Consensus algorithms

e Distributed Gradient Descent

e Distributed Gradient Tracking
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From DGD to distributed gradient tracking

Dynamic average consensus (tracking of
time-varying signals)

N
Distributed Gradient Descent: Tik+1 = E WijTjk + Tik+1 — Tik
j=1
T = E wijxj ke — oV fi(Ti
i,k+1 —~ ijlj,k k fZ( l,k) Tha1 = Waxp +rke1 — Tk
JEN;

T T
Ti0 =Ti0 = 1 z0=1 1r9
Idea : Replace V fi(x;,x) with a tracker of the average of
the local gradients % Zﬁvzl Vfi(xik)

(from local to dynamic consensus)

mass preservation

X
x; : tracker of N Zri,k

=1
Tik+1 = E Wi gk — QkSik
JEN;
In our case
X
Si.k : tracker of N E V fi(xix) Tik = Sik
=1
rik = Vfi(xik)
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Distributed gradient tracking

Dynamic average consensus (tracking of

time-varying signals)
Distributed Gradient Tracking:

N
Tik+1 = Z WijTj k — anl(xl,k) Tik+1 = Z Wijl‘]‘,k P Tik+1 — Ti,k
JEN; j=1
skt = Y Wwijsik + Vfi(@ine1) = Vi) 1 = Wa(k) + 1 =i

ieN; T T
JEN: Ti0 =Ti0 = 1 2z0=1 19

sio =V fi(zio) = mass preservation
N N N
Zsikzzvﬁ(wik) . 1
, , ; © tracker of — i
2 2 @i : tracker of ; Tik

mass preservation

In our case

Tik — Si,k
rik = Vfi(xik)
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Distributed gradient tracking

Distributed Gradient Tracking:

LTk+1 = W.Tk - Osz(.Tk)
Sky1 = Wk + Vf(zrs1) — Vf(zk)

Proposition. Assume

for all 4, f; is L-smooth and pu-strongly convex;

W doubly stochastic and primitive;

s0 = V f(xo) and xo arbitrary;
e « constant sufficiently small.

Then z — 1z, linearly, i.e., there exists 0 < p < 1 and C > 0 such that

ek — L. < Cp".
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Distributed gradient tracking

Distributed Gradient Tracking: How to prove convergence?
e singular perturbation/ time-scale separation;
e small gain theorem;

e algebraic analysis/ matrix stability.
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Distributed gradient tracking

Distributed Gradient Tracking: How to prove convergence?
e singular perturbation/ time-scale separation;
e small gain theorem;

e algebraic analysis/ matrix stability.

Let
Lave,k = %1T$k7 Save,k = %]-Tsk, vfave,lc = %1va(mk)
then
Hsk_H — Save,k+11|| o+ La L(OZL + 2) al? ||5k - Save,k]-”
|Zk+1 — Tave,b+11]| < o} o 0 llzr — wave,x 1]
VN |[Zave o1 — | 0 of A VN|[Zave e — x|

where A = max {|1 — pal, |1 — La|} and where o depends on spectral properties of W

It is possible to prove that there exists @ > 0 such that for 0 < o < & the above matrix is Schur stable.

Prof. R. Carli @ Control Tools for Distributed Optimization e Optimization and distributed algorithms 91 |91



