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The Lur'e problem (1944)

The Lur’e problem studies the (absolute) stability of the origin = 0,

for a dynamical system obtained as the interconnection of a LTI system u v
0 kr linear plant »
ZTr41 = Az + Bug, To =1
yr = Cxp + Dug
with z, € R", ux, € R™ and y, € R?, in feedback with a static nonlinearity nonlinearity
ur = (yx)
with ¢ : R? — R™ well behaved (namely, sector bounded) () ,
Example. A saturation can be modeled as a sector bounded nonlinearity K|--—
Yk, if [ye| < K >y
Uk = . .
k- sign(ys), if yil > 5

Goal. Study the interconnection stability based on the properties of the individual components
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Lyapunov theory (recall)

Lyapunov theory focuses on the equilibrium stability of unforced systems as

o
Trt1 = f(ar), zo = 2’ l

with state zx € R™ and a well-behaved vector field f : R™ — R" plant

Yk

Study whether a generalized energy function V : R™ — R decreases along
trajectories to certify stability of the equilibrium x = x¢q

Equivalently, check if

e the value of V at T > 0 is less than the initial value
V(IT) — V(J?o) S 0
e the sign of the increment of V' along trajectories of the system for all k € N

V(l‘k+1) — V(l‘k) S 0
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Energy-based approach for input-output systems

Consider input-output (ur € R™ and yir € RP) systems in the form

o
Tr1 = f(2k, ur), zo = a° l

yr = g(ox, ur)

Uk Yk
— plant —

with well-behaved f : R" x R™ — R" and g : R" x R™ — RP

Some questions arise when considering the energy balance of the system
e Does the system (internally) produce energy?
e Does the system dissipate energy?

e Does the system store the externally supplied energy?

Focus on systems in which the increase in internally stored energy is less than the externally supplied energy
provided through the input
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Definition of dissipative system

Definition. A system is said to be dissipative from input u to output y with respect to the supply rate
@ : R? x R™ — R if there exists a storage function V : R™ — R satisfying
T

Vizr) = V(wo) <) o(yr, ur)
k=0

for all admissible trajectories and all T' > 0 (aka dissipation inequality)
Definition. A system is strictly dissipative from u to y wrt ¢ if it also exists € > 0 such that V satisfies

T

T
Viar) = Viao) < 3 ol un) — € 3 (loal* + fuel®)
k=0 k=0

for all admissible trajectories and all 7" > 0

Remark. The negative term is called dissipation rate and measures the energy lost in the system, typically
e (yrs k) = yi uk — 1 llywll® — 2 lluk]®

where 71 and 2 are referred to as passivity indices

Remark. Passivity seamlessly applies to linear/nonlinear static/dynamical systems
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More definitions about passivity

A system is said to be

e passive if the storage function satisfies
V(zre1) — Vi) <y u
e Jossless if the storage function satisfies
V(zrer) — Viak) = yp u
e input striclty passive if there exists y1 > 0 such that
V(zrs1) — Vi) < ug ye — 71 lusl®

(input-feedforward passive (IFP) for general v 1 (u))
e output striclty passive if there exists 2 > 0 such that

V(wpir) = Vi(zx) < ugyr — yollyxl®
(output-feedback passive (OFP) for general y " w2 (y))
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Passivity for algebraic maps oy

Consider an algebraic (aka static or memoryless) map

ur—ry = ¢(u)

> U
e It is passive (or monotone) if, for all v, it satisfies
d(u) u>0
e It is output striclty passive if there exists v1 > 0 such that

-
$(u) ' u =il p(w)]* =0
e It is input striclty passive if there exists 72 > 0 such that
$(w)"u —e|ul* > 0
e |t is very strictly passive if there exists v1,y2 > 0 such that

$(u) " u = llg(w)|* — yzllull* > 0
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Example: discrete-time integrator/accumulator

Consider the system

Tkl = Tk + Uk

Yk = Tk
with state, input and output xk, uk, yx € R™ (m =n)
Consider the storage function
1 2
Vi) = 3 llkll
The increment of V' along system trajectories satisfies

V(wrgr) — Vi) = Hlzes|® — 3zl
= Lk + ul® — 3|kl
=z up + & |luel?

= yi uk + 3|uk]|”
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Example: modified discrete-time integrator

Consider the system

Tk4+1 = Tk + Uk

Yk = Tk + Uk

with state, input and output zy, uk, yx € R"

Consider the storage function
1 2
Vizk) = gkl
The increment of V' along system trajectories satisfies

V(zker) — Vi) = Sllanl® — 2okl

2 2
= sllzx +usll® — 3llzll

epup + 3|

T
= Yk Uk
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Storage functions for linear systems

Consider an input-output linear system
Trt1 = Az + Bug, To=1

yr = Czp + Duy,

and a quadratic storage function V(z) := 22" Pz, with P € R**" and P=P" >0

Then, the increment of V' along system trajectories satisfies

V(zkir) = V() = szip1 Pors — i Py
12l (ATPA— P)ay, +af (AT PB)uy + tuj BT PBuy,

where
e the first Lyapunov-like term (quadratic in xx) is possibly negative (if A is Schur)

e the last term (quadratic in ug) is always positive, depending also on P

e the cross term must be exploited, e.g., reconstructing the output yx
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Frequency domain: discrete positive realness

An alternative input-output description of linear systems is related to the frequency domain
(Focus on square systems only, i.e., with p = m)

A linear time-invariant system can be represented with its transfer matrix G(z)

R

The m x m transfer matrix G(z) of a LTI system can be computed from its 1

state-space realization (A, B,C, D) as

Q
=
N
&
Il
Il

C(zl, —A)'B+D, z€C

al
W

Definition. A transfer matrix G(z) is discrete positive real if
e ((z) has analytic elements for all z € C such that |z| > 1
e G(z)+G(Z)" >0 for all z € C such that |z| > 1

Definition. A transfer matrix G(z) is strictly discrete positive real if there exists p>1 such that G(z/p) is DPR

Prof. I. Notarnicola e Control Tools for Distributed Optimization e Refresher on passivity theory 10|21



Example: discrete-time integrator (revisited)

Consider the system
Tk+1 = Tk + Uk
Y = Tk
with state, input and output xg, uk, yx € R™ (m =n)

The transfer matrix is

T 1 1 z—1+7—1 R(z) — 1
G +G@) = —FInt-—h = PESTE In:2|z_”2

I,
It is positive exclusively for #(z) > 1, and not generally for all |z| > 1

Remark. The state-space description is A =0, B=1, C =1 and D = 0, thus it is not strictly proper
Remark. Considering n = 1 is practically wlog
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Example: modified discrete-time integrator (revisited)

Consider the system

Y@=z 1 SN2
G(Z)_U(z)_zfl—Fl_zfl
> R
To check DPR, we study the sign of
oz z  222—z2—7 __|z]> —R(2)
CO+CO =5+ 7= =1 ~2 a-ip
R0~ 1 450 L
|z —1J?

It is positive outside the disk of radius § centered at z = 3, hence also for all [z| > 1
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Positive real lemma

Is there a connection between passivity and discrete positive realness?

Positive-real lemma. Let (A, B,C, D) be a minimal realization of a square transfer matrix G(z), with no
poles outside the unit disk and simple poles (if any) on the unit disk
If there exist a (describing) matrix P€R"*", P=P' >0, and matrices M,, € R*™ and M,R**™ such that
ATPA—P=-M, M,
A"PB=C" - M, M,
B'PB=D+D" - M, M,
then, the transfer matrix G(z) is discrete positive real

Conversely, if G(z) is discrete positive real, then for any minimal realization of G(z) there exist P = P’ > 0,
M, and M, satisfying the previously stated matrix equations

Remark. For general rectangular systems, the so-called bounded-real lemma must be considered
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Implications of discrete positive realness

The increment along trajectories of the storage function V (z) == %xTPx satisfies

V(zkt1) — V(r) = %x;{(ATPA P)z + z (AT PB)ui + tu BT PBuy
Z%kT( M)z +z (CT —MyM)uk—i— Lul (D+ D" — M, My,)uy
=y up — §||Myffk + Myug||* + Jug (D= D) uy,
—_

Remark. The matrix D — D" is skew-symmetric

Remark. The vector Myxy, + M, ui represents a particular “output” of the system
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Kalman-Yakubovich-Popov lemma

Kalman-Yakubovich-Popov lemma. Let (A, B,C, D) be a minimal realization of a square transfer matrix
G(z), with no poles outside the unit disk and simple poles (if any) on the unit disk

If there exist P = P' >0, My, M,, and p > 1 such that
ATPA-1p=_M,M,
P
ATPB=CT - M, M,
B'"PB=D+D'" — M, M,

then, the transfer matrix G(z) is strictly discrete positive real
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Implications of the KYP lemma

The increment along trajectories of the storage function V (z) == %xTPx satisfies

V(@) = V(o) = ye uk — 3| Myzy, + Myug||® — (1= )V ()

Remark. If the closed-loop input uy, satisfies y ur < 0, then exponential stability of the origin is certified

Remark. The negative term — || Mz + Myux||* can be neglected

Prof. I. Notarnicola e Control Tools for Distributed Optimization e Refresher on passivity theory 16|21



Example: pure delay system

Consider the system

Tht1 = Uk
Y = Tk
The transfer function is
1
G =
()=~
To check DPR, we study the sign of > R
11 _R(z)
G(z)+G(zZ) = - + == 2 BB

It is positive exclusively when #(z) > 0, and not in general for all |z| > 1

Remark. The state-space description is A =0, B=1, C =1 and D = 0, thus it is not strictly proper
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Example: modified delay system

Consider the system

The transfer function is

To check DPR, we study the sign of

z 7+ (z 2
G)+ G = 2L 2L (Z+1)Z+2(Z+1)z _ 2P+ %)
z z || |z]2
_,(R@) +35)°+S(2)° — 4
|z|?
It is positive outside the disk of radius % centered at z = —%, hence for all |z| > 1

Remark. For strict DPR, scale the transfer function with p > 1, i.e., G(z/p) = Z/Zp/;l = Z£2: nm-phase
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Example: zero-pole system
Consider the system with a (real) zero at z = zo and a (real) pole at z = pg

Z— Z
G(z):Z_p‘;

To check DPR, we study the sign of

&

G(2) + G(z) = —2:;2 + —g :;Z

_ (2= 20)(#—po) + (2 — 20)(z — po)

|z — pol?
_9 |z|* — (20 + po)R(z) + 20p0
|z — pol?
(R) - 25m)" +30) - (2052)”
=2 = poP

It is positive outside the disk of radius ‘ZLZP"' centered at z = 201P0

Remark. For the DPR condition to hold, zo and po must lie in the interval [—1, 1]
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Stability and control of a passive (linear) system

Consider a passive LTI system (A, B,C, D)

Tk+1 = Az + Buyg
yr = Cxp + Dug,

with a storage function V satisfying the dissipation inequality

V(zpt1) = V(zk) < Ya uk
o If up =0, then V(zp41) — V(zk) <0, i.e., marginal stability of the equilibrium is guaranteed
o If y, =0, then V(zr41) — V(zk) <0, i.e., the zero-dynamics of the system is stable

e A passive system can be easily stabilized using a static output feedback
U = —QYk

with an arbitrary gain a > 0
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The passivity theorem

Theorem. Given two passive (nonlinear) systems X1 and X, their (negative) feedback interconnection
(whenever well-posed) is also passive from (v}, 7%) to (v}, yi)

Remark. The equilibrium of the interconnected system is stable (possibly also asymptotically stable)

Remark. An excess of passivity in one subsystem can compensate for a shortage in the other

1
Th 4+ v
— > O—> 31
+
Yo —O——
vi oo
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