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Convex optimization problem (recall)

Consider the unconstrained optimization problem

min f(z)

where f: R™ — R is p-strongly convex and has L-Lipschitz continuous gradient (L > p > 0)

For all x4, 2, it holds (Vf(za)=Vf(zp)) " (za—2p) > A Vf(xa) =V f(@p)|® + L lea—as]® >0
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The gradient method in error coordinates

Let £ = x — x4, then the gradient method reads
The1 = Tk — Ok
Yk = Tg
U = Vf(gk +a+) — Vf(zs)
| I |

with a > 0 being the so-called stepsize and an arbitrary initial condition zo € R™

The convergence analysis amounts to studying the stability properties of the origin & = 0,, (unique equilibrium)

U, Tp41 = Tp, — 0l Uk
Yk = Tk

g = V(T +2+) — VF(2x)
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Equivalent representation of the gradient method analysis

The gradient method is a feedback interconnection of a discrete-time integrator and a static nonlinear map

gr—a=Vf(G+a) - Vi)

which can be “replaced” with its sector-bounded characterization (x4 = 3 and g = 0)

(VI +22) = V(@) G > A2 IV @+ 20) = V@) + 25 1

ﬂk‘ Tp41 = T — Qi Yk ﬂk‘ Tpy1 = T — aly Uk
U = Tk Uk = Tk
VI +z4) — Vi(zs) iy Gk > ik ll® + 25 g1
k = ‘u+L H+L

Are the two individual components passive?

Prof. I. Notarnicola @ Control Tools for Distributed Optimization e The gradient method analysis via control tools 3|7



Gradient method analysis: first loop transformation

First, actuate a (positive) feedback action on the plant —r=(—an)

T T T T T T T T T T T T T oot TTTTTTT T T 1

~ ~ ~ I

=T+ pg : pofe !

i l :

“stealing” strong convexity from the cost function i _ - p ~

ng g vexity unction f ;+muk Fpp1 = &g — ol E

The resulting (linear) dynamics is I+ ~ e = T i
I

Trt1 = (1 — ap) Tk — iy Uk ::::::::::::::::::‘ Yk

1

Yk = Tg i n ]
1

o~ - - L .. —O VI + ) - :

with Uy =14, —pugr and g satisfying the co-coercivity bound i _T :

| 1

~T ~ —~ 112 ! 1

Ug Uk = ﬁ““k” ! JTR !

R S |

Vg()

Remark. The static nonlinearity (lower subsystem) can be thought of as being associated with a convex
function g(-) having a (L — p)-Lipschitz continuous gradient

Remark. The transfer function from @y, to gk is (1 — pGa—y(z)) ™' Gamy(2), with Gay(z) = — 25
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Gradient method analysis: second loop transformation

Second, consider a feedforward action on the plant
Ggr—y=9- %_#a _______________________________ .

The resulting (linear) dynamics is

Tk+1 = (1 — ap)Zr — oty
o= (mamm ) e O—
Yk = Tk — 75 Uk Tr = &, 4 ,
I
~ 1 o~
with U, and ¥, satisfying the monotonicity bound Uk :::::::::::::::::::::::::::::::: Yk
1
! 1
AT ~ I \
>
Up Yk 2 0 . 0] ooul
! +T |
! 1
i o1 |
1 i L—M I
! 1
- e _____ 1
Vh(")

Remark. The static nonlinearity can be thought as associated to a merely convex function VA(-)
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Gradient method analysis: zero-pole map

The transfer function from —uy to g is = 1 7
uy, Glz) = 1 z—(1-al) Yk .
% L—pz—(1—oap)
Gz) = Y(z) _ Q@ n 1 —
—U(z) z—(—au) L—p
1 z—(1—-al) uy, AT
= >0
L—pz—(1-ap) o=

The open-loop plant has a zeroatz=1—aL andapoleatz=1—au

Recall that G(z) + G(Z) is positive outside the disk
e of radius ‘ZO?"” — ‘1—QL;1+0¢M :aL;M and

e centered at z = Z”T”O =1 —a#

For a sufficiently small stepsize @ > 0, the mentioned disk is entirely contained in the unit disk
Hence G(z) is strictly discrete positive real

Remark. For a > % the system is non-minimum phase (a real zero less than —1), hence not DPR
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Gradient method analysis: convergence proof

Consider a minimal state-space realization of the transfer function G(z) given by
Teyr = (1 — ap) @ + o —x)
U = Tp + %_H(—ak)
Then, by the KYP lemma, there exists a storage function V() = %j‘TPi’, with P = PT > 0, such that
V(#41) = V(@) = Gr (=) — 3IMy3k + Mu (=) ||* = (1= £)V(@x)
with p > 1
When feedback interconnected with a passive nonlinear map (i.e., satisfying 7 @ > 0) it follows
V(&r41) = V(@) < —(1 = )V (Zk)
certifying exponential stability of the equilibrium £=0, and hence convergence of y;, to the optimal solution x.

Remark. The explicit values for P, M,, and M, are not required
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