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Lecture outline

e Refresher on integral control (in discrete-time and state-space)
e Application to various problems:

» consensus algorithm

» gradient method (and its acceleration)

» (parallel) consensus optimization
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Integral control

Integral control is useful to ensuring the ability to generate a control input u in closed-loop that enables the
output y to (exactly) track a given constant reference y., in a robust manner

Yx  + Y
*—VO—EV controller v plant >

\4

Prof. I. Notarnicola @ Control Tools for Distributed Optimization e Integral control for (seemingly) diverse problems 2|15



Integral control for algebraic maps

Consider the algebraic (static, possibly nonlinear) map ¢ : R® — R"

ur— e = ¢(u)
u e=y
— ()
Goal. Steer the error e = y to zero using a (dynamic) feedback controller
Ek+1 =&k + ek
up = K& + Kpeg
where K; and Kp are the integral and proportional gains, respectively
If the interconnection is stable, then klim er =0
— 00
e 1 u Y
—0 > K;+Kp > #(-) >
= IJF z—1
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Consensus (discrete-time) algorithm

The consensus problem among N agents amounts to computing u € RY such that Lu = Oy,
where L is the Laplacian matrix L € RY*¥ of the communication (connected aperiodic) graph

The Laplacian mixing is modeled by the following algebraic (linear) map

u—e=Lu u en

> € = Luk

If the error e = O, then it must be u € span1 (consensus)

Consider a discrete-time Pl controller

1 =&k teg
up = K&k + Kpeyg,

k1 =&kt ek
ur = Kr&r + Kpeg

Setting K1 = —aln, with a sufficiently small « > 0, and Kp = 0 yields

€1 =&k + L(—ady)
_(I-aL)
w
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Laplacian (continuous-time) averaging

The Laplacian mixing is modeled by the following algebraic (linear) map

u+—e=Lu

Consider a continuous-time Pl controller

> e(t) = Lu(t)

E(t) = e(t)
u(t) = Kr&(t) + Kpe(t)

£(t) = e(t)

Setting K1 = —In and Kp = 0 yields
£(t) = —L&(1)

u(t) = K1§(t) + Kpe(t)

e(t)

Remark. The discrete-time consensus algorithm is the Forward-Euler discretization of the Laplacian averaging

dynamics with sampling time a > 0
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The gradient method as a controlled nonlinearity

Unconstrained optimization amounts to computing v € R"™ such that V f(u) = 0,

The gradient operator is an algebraic nonlinear map

ur— e = Vf(u)

If the error e = 0,,, then u must be a stationary point of f up ex
er, = Vf(ug)

A\ 4

Consider the discrete-time Pl controller

k1 =& tex €1 = &k + ek
ur = K1& + Kpey, up = —alg

Setting K; = —al,, with a sufficiently small « > 0, and Kp = 0 yields
Ekt1 = &k + Vf(—akk)

Changing coordinates via £ — x := —a&, the gradient method is recovered
Tk+1 = Tk — an(mk)
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The gradient flow

The gradient operator is an algebraic nonlinear map

ur—e=Vf(u)

Consider the continuous-time Pl controller

Et) = e(t)
u(t) = Kr&(t) + Kpe(t)

Setting K1 = —1,, and Kp = 0 yields
£(t) = &(t) + Vf(=E(t))
Changing coordinates via £ — x := —a{ recovers the gradient flow

&(t) = =V f(z(t))

e(t) = V£ (u®))

e(t)

Remark. The gradient method is the Forward-Euler discretization of the gradient flow with sampling time o> 0
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Proportional-integral control: the proximal minimization method

If a more general (discrete-time) Pl controller is adopted (Kp = —al, # 0), then
Eut1 =&k t ek
up = —ay — aer = —abgy1

The resulting closed-loop dynamics has the following implicit update
i1 = &+ Vf(—ari1)
Changing coordinates via £ — x = —a{ yields
Try1 = Tp — aV f(Tri1)
which coincides with the so-called proximal minimization method

Tir = argmin f(x) + 2 le — i
xT

Remark. The PMM is the Backward-Euler discretization of the gradient flow, which works for all « > 0
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Accelerated gradient method

Consider the function f(z) = xsin(2z) and compare the nominal and the accelerated gradient methods

| —e— Gradient method —e— Gradient method
—— Accelerated ¢ —»— Accelerated
-3 T \ 1 \ T
0 1 2 3 0 50 100 150
z k
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The heavy-ball method
Idea. The nominal gradient method can be enhanced by elaborating on the closed-loop performances
The heavy-ball method is described by the following ARMA model

Trr1 =z — oV f(zr) + Blzr — 2K-1)

where 8 € (0,1) is called the momentum parameter

The state-space realization is a second-order dynamics given by

u e

Tr+1 = (14 B)xr — Bgr — aex i el = Vf(ug) -
qk+1 = Tk
up = T

anl =117 9 [a)- Bl
Qk+1 1 0| |gk 0|k

in feedback with ex = V f(uy)

Remark. What about the zero-pole map of the linear subsystem?
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The realm of an accelerated gradient method

The linear part of the heavy-ball dynamics has a zero at z =0 and two poles at z =1 and z = 8 (stable)

Therefore, it can always be represented as an integrator (the gradient method) in series with a lag compensator

YL e = Vi (ur) -

Gl (Z) — G2 (Z)
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Nesterov's method
The Nesterov's method is described by the following updates

e = a2k + B(xr — Th—1)
ZTpr1 = — aVf(ne)

where m;, extrapolates based on the current iterate x; and the previous one xx_1, using a momentum
parameter 8 > 0. The descent step is then performed based on 7y,

The state-space realization is a second-order dynamics given by

Tp+1 = (14 B — B — aex
qk+1 = Tk
ur = (1 + Bz — Bax

in feedback with e = V f(uy)

Remark. How does this differ from the heavy-ball method?
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Consensus optimization (recall)

A consensus optimization problem is
N
e o500 N
where each f; : R — R is strongly convex and has Lipschitz continuous gradient ./.
Let £ = (21,...,zn) € RY and define f : RN — R as f-\

fz) = Z fi(w:)

The optimal solution x, = 1x,, with 1 = (1,...,1) € RY, must satisfy

1"V f(z,) =0 = I €RY st Vi(z) + (I —J)A = 0n
(IN — J):E* =0n

where J:= L117
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Parallel implementation of the gradient method for consensus optimization

The consensus optimization problem can be expressed as

N min f(z)
min Zfl(x) — v€RY
xeR subj. to (I — J)z =0On

The KKT operator (u' € RY is the primal variable, u*> € R" is the Lagrange multiplier) is given by
ul el Vi) + (I — J)u?
u= [UQ} — e = LQ} = [ (I = Iy =: ¢(u)

Remark. If e! = Oy, then it must be 17V f(u') =0

Solving the constrained optimization problem amounts to computing u such that e = ¢(u) = O2n
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Parallel gradient algorithm for consensus optimization

pplying a pure integral action, with gain K := — , to the operator yields
Applyi i | acti ith gain K aly a1 he KKT ield
N
Vi(—agh) — B — J)ér
Skt =&k + { I fi’“()l _/6:]()51 )gk}
k Uk Vi(up) + I — Jui ek
> €L —
. (I - J)ul
1 1 Ay 951

Changing the coordinates as [52} — Bz} == {_EEQ] yields

Ekt1 =&k +ex
11 1 2 up = Krég
Tprr = xp — aVf(zy) —a(l — J)zy,

l’i-&-l = xi - B - '])mllc

Remark. In optimization, it is called the a primal-dual algorithm with a Lagrangian function given by
L(z,\) = f(z)+ A (I — J)z

Remark. It is a parallel algorithm: the local gradient steps are fully decentralized, while the terms involving
the operator J require a centralized node to compute the averages
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