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Friday Afternoon Trajectory

Distributed Optimization

N

min f(z) = fi(x)

i=1

2(k+1)=(1—a)z(k) + aTprs z(k)

Operator Theory \_) minimize  f(z) + g(y)
subject that Ax + By =c¢

ADMM — Relaxed ADMM
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ADMM

Consider the optimization problem

min  f(z) +g(y)

s.t. Ax+ By=c

where z € R™, y € R™, A € RP*", B € RP*™, c € RP.
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ADMM

Consider the optimization problem

min - f(z) +g(y)

@,y

s.t. Ax+ By=c
where z € R™, y € R™, A € RP*", B € RP*™, c € RP.
Augmented Lagrangian () vector of Lagrange multipliers, p > 0)

Lo,y N) = f(@) +9(y) + AT (Az + By — o) + L[| Az + By — o
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ADMM

Consider the optimization problem

min  f(z) +g(y)

s.t. Ax+ By=c
where z € R™, y € R™, A € RP*", B € RP*™, c € RP.
Augmented Lagrangian () vector of Lagrange multipliers, p > 0)

L(@,y,0) = f(@) +9(y) + AT (Az + By — c) + £ || Az + By — c||”
ADMM - Alternating direction multipliers method
Tht1 = arg;ninﬁp(;v, Yky Ak)

— argminﬁp(zwuya k)
Y

Akt1 = Ak + p (AZp41 + Byr+1 — ¢)
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ADMM - Relaxed ADMM

Consider the optimization problem
min  f(z) +g(y)
s.t. Ar+ By =c
where z € R", y € R™, A € RP*", B RP*"™, c € R”.
Augmented Lagrangian () vector of Lagrange multipliers, p > 0)
Lo,y = f(@) +9(y) + AT (Az + By — o) + L[| Az + By - o
Relaxed ADMM - classical ADMM for o = 1/2)
i1 = argmin {£o(@n, v, M) +p(20 = 1)(By) (Azi) + By, — c}

Akt1 = A + p (Azk + Bygi1 — ¢) —p(2a — 1)(Azy + By — ¢)

Tpt1 = argmin L, (2, Yr+1, Ak+1)
xT
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ADMM - Relaxed ADMM

Consider the optimization problem

rg}yrl f(z) +g(y)

s.t. Ax+ By=c
where z € R™, y € R™, A € RP*", B € RP*™, c € RP.
Relaxed ADMM - classical ADMM for o = 1/2)
i1 = argmin {£o(an, v, A)+0(20 = D)(By) (Awi) + By, — c}
Akt1 = Ax + p (Azk + Byp+1 — ¢) —p(2cc — 1)(Axy, + Byr — ¢)

Tpt1 = argmin L, (2, Yr+1, Ak+1)
xT

Convergence Under some mild assumptions on f and g, convergence to optimal solution is guaranteed if

O0<axl1 and p>0
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Friday Afternoon Trajectory

Distributed Optimization

N

min f(z) = fi(x)

i=1

2(k+1)=(1—a)z(k) + aTprs z(k)

Operator Theory \_) minimize  f(z) + g(y)
subject that Ax + By =c¢

ADMM — Relaxed ADMM
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Optimization over networks

e G = (V,€&) undirected .
e fi:R — R, local function known only by node i / \ f

N
mziani(aﬁ) (%) / \ / \

i=1
Question : What is the relation between problem in (%) and / \ / \ /

problem (xx)? .c——*. *-_._.

min f(z) +g(y) ()

s.t. Ar+ By =c
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From optimization over networks to consensus optimization

e G = (V,&) undirected .

e fi:R — R, local function known only by node 4 / \
Xi
N
PUNDE
min Z fi(x) . .

e x; : local copy of x stored in memory by node ¢ / \ / \ /

st. zr1=...=xN

consensus constraint

e The two problems are equivalent
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From optimization over networks to consensus optimization

e G = (V,&) undirected .
e fi:R — R, local function known only by node / \
Xi

N
min y fi(x) / /

va

e x; : local copy of = stored in memory by node ¢ / \ / \ /

N
=1

l‘l,,ZNZ
st. ¢y =x; A (7,7]) e

consensus constraint

e The two problems are equivalent if the graph G is
connected
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From optimization over networks to relaxed-ADMM

e x; : local copy of x stored in memory by node ¢

min ifl(xl) / \ i

L1y TN £
k3

st. &y = V(i’j)eg / \ /

O
consensus constraint . . ] /\.

e bridge variables : y;;, s / \ / \

Ti = Yij ./. .\.
T = Xj -~ Ti = Yji V(’L,j) €€
Yij = Yji
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From optimization over networks to relaxed-ADMM

...we can consider the following problem...
i St SN
Ti = Yij
s.t. X =y V(Z,]) cé& \

.\
Yij = Yji o—©0 j ©

that can be rewritten as / \ / \
©
m1n flz Zfz

Az +y=0
s.t.
y =Py
_ T N _ 2|€|
z=[z1,...,on] €R Y= [yij,v5:) €R
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Optimization over networks - Relaxed ADMM

Last step : From .

min f(x)—ZNijw) / \ f
w /NN

to o—@0 o

win 56 100 /NS N/
o—©

x,y
st. Az +y=0
where
B 0 if y=Py
ti-p(y) = { +oo  otherwise
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Optimization over networks - Relaxed ADMM

From
N Relaxed ADMM - classical ADMM for oo = 1/2)
min3 10 .
P yirr = argmin { £,(2k,y, ) +p(20 = 1)(By) (Azy) + Bye - c}
Yy
to
Ait+1 = A + p (Azk + Byk+1 — ¢) —p(2a — 1)(Azy + By — ¢)
r;ligl f(@) +a—py(y) Try1 = argmin L, (T, Yr+1, Ae+1)
st. Ar4+y=0

X e R?E 4 e R2I€I
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Optimization over networks - Relaxed ADMM

Problem
Relaxed ADMM - classical ADMM for oo = 1/2)

min f(x) + ¢—py(y)

* . T
v Yk+1 = argmin {Ep(xk,y, Ae)+p(2a — 1)(By) (Azk) + Byr — c}
st. Ar4+y=0 Yy

Akt1 = Ak + p (Azk + Byry1 — ¢) —p(2a — 1) (Axr + Byr — ¢)

Tit1 = argmin L, (T, Yr+1, Ae+1)
xT

Relaxed ADMM

1
Vi1 = 50 [(Nigk + Njik) + 20p(zik + x5k) — p(20 = 1) (Yijk + Yjik)]

[y

Mgt = 5 [Nk = Xjiw) + 20p(@ig = 250) = p(20 = 1) (yize — Yjin)]

2 = argmin 3 fi(ws) + EINlleal® + 27 D p(20 = Dysin — 2005k = Aig
i JEN;
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Distributed Relaxed-ADMM

Relaxed ADMM

1
Yiski1 = 5 [(Nijke + Njisk) + 20p(@ik + 250) — (20 — 1) (Yig b + Yji,k)]

1
Night1l = 5 [(Nigk = Njik) + 2ap(Ti ke — Tj,6) — p(20 = 1)(Yijk — Yjih)]

Ti k1 = argmin § fi(z;) + g\/\/z'H\IiHQ a0 pa— V)yjin — 2005 — Aij i
i JEN;

Question: amenable of distributed implementation? Yes! Node i stores in memory s, {yij, Aij } e,
Relaxed-ADMM

Yij k1 = hy (%‘,k,yij,m Aij ks {wj,k7y]isk77)\jiak}j€j\/i)

Aijkt1 = R (ﬂfi,myz‘j,k,)\z‘j,k, {25, Yji Aji,k}je/\@)

Tikt1 = ha (mi,k7yij,k,)\ij,k7 {251, Yji ks Ajiak}jej\/})
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Distributed Relaxed-ADMM

Observation: it is possible to exploit the redundancy introduced in the constraints to simplify the algorithm?

Ti = Yij
Ti =X &= i =y;  V(i,5) €E
Yij = Yji

By properly defining z;; as function of (yi;, Aij, ;) one can simplify the algorithm to the following two updates

T

pd; 2
(EA

Tipr1 = argmin ¢ fi(w:) — [ Y zie | @i+ 5

i JEN;

Zijet1 = (1 — @)zije — azji g + 20T k41
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Distributed Relaxed-ADMM

Distributed algorithm?
T

. d;
argmin { f;(z;) — Z Zijk | Ti+ p2 (A
i JEN;

Ti,k+1

Zijt1 = (1 — @)zije — a2ji g + 20T k41

e Node ¢ keeps in memory z; and {qu]'}jeNi
e Define qj—; = —zji,k + 2p2;k+1 ( quantity sent from node j to node i)
e Then

zijht1 = (1 = @)zij ke — @Zji b + 20075, k41

can be rewritten as
Zijk+1 = (1 — @)zijx + agj—i

Prof. R. Carli @ Control Tools for Distributed Optimization ¢ ADMM via operator theory and distributed optimization
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Distributed Relaxed-ADMM

Algorithm
Node i keeps in memory x; and {z;; }jeN,- @
1. Node i computes ; k41 as .Q i

. d;
@ik = argmin § filwd) = | 3 ze | @t Bl

= ./,.\/\/\
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Distributed Relaxed-ADMM

Algorithm
Node i keeps in memory x; and {zi;},c ., .\
1. Node i computes ; k41 as ./ !
" / N\
. d; S
T k41 = argmin  fi(x;) — Z Zij,k i + p2 Hxl||2 ® ®
jex, /N NN

2. Node ¢ computes and transmits the temporary variable g;_. ;
for all j € NV;

Qi—j = —Zijk + 20%i k41

Prof. R. Carli @ Control Tools for Distributed Optimization ¢ ADMM via operator theory and distributed optimization 18 |54



Distributed Relaxed-ADMM

Algorithm
Node i keeps in memory z; and {Zij}jeNi .\
1. Node i computes ; k41 as ® ) .i
. d; -
T k41 = argmin  fi(x;) — Z Zij,k i + p2 Hxl||2 ® o
je /N NN\

2. Node ¢ computes and transmits the temporary variable g;_. ;
for all j € NV;

Qi—j = —Zijk + 20%Ti k41

3. Node ¢ gathers q;_,; from all j € N;;

Prof. R. Carli @ Control Tools for Distributed Optimization ¢ ADMM via operator theory and distributed optimization 19 |54



Distributed Relaxed-ADMM

Algorithm
Node ¢ keeps in memory x; and {z;; }jeN,-

1. Node i computes ; k41 as

pd; 2
(e

Tigr = argmin Q fi(w) — [ D zije | @i+ 5

i JEN;

2. Node ¢ computes and transmits the temporary variable g;_. ;
for all j € NV;

Qi—j = —Zijk + 20%i k41

Node ¢ gathers q;_,; from all j € N;;

4. Node 7 computes z;;k+1 as

Zijo+1 = (1 — @)zijk + agji
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Distributed Relaxed-ADMM

Proposition (conditions on o and p for convergence)
If 0 < a < 1and p >0 then Distributed Relaxed ADMM converges to the optimal solution.

Proposition (conditions for exponential convergence)
If f; are strongly convex then convergence is exponentially fast.
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Friday Afternoon Trajectory

Distributed Optimization

N

min f(z) = fi(z)

i=1

2(k+1)=(1—a)z(k) + aTprsz(k)

Operator Theory \_) minimize () + g(y)
subject that Ax + By =c¢

ADMM — Relaxed ADMM
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ADMM

Definition (Nonexpansive operator)

An operator T : R” — R"™ is nonexpansive if for all x4,z p it holds

[T(xa) = T(xp)| < llza — 25|

Definition (Contractive operator)

An operator T': R™ — R" is contractive if there exists 0 < v < 1 such that, for all z4,zp, it holds

[T(xa) = T(xp)| <vllza — 25|
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ADMM

Definition (Fixed points)
We say that Z is a fixed point for T : R™ — R"™ if

T(z) = Z.

We denote by fix(T") the set of fixed points of T, i.e.,

fix(T) ={z|T(z) =z}
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Finding fixed points
Proposition (Banach-Picard iteration) Let T : R™ — R™ be contractive. Then the iteration

Trr1 = T(zx)

converges to the fixed point of 7.

Proposition (Krasnosel'skii-Mann iteration) Let T : R™ — R™ be nonexpansive, with fix(T) # (). Take
0 < a < 1, then the iteration
Ze+1 = (1 — @)z + aT'(xk)

converges to a fixed point of T'.
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Proximal operators

Definition (Proximal operator) Let f : R™ — R be closed, proper and convex and let p > 0 be a parameter.
We define the proximal operator

. 1 2

pros, () = angmin { () + oo~}
pf( zeR™ 2p

converges to a fixed point of 7.

Reflective operator : refl,y = 2prox,,, — I

Fact. The proximal and reflective operator are nonexpansive.

Assumption. From now on we will assume all the functions to be closed, proper, convex and that all the
optimization problems we consider have a unique minimizer.
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Proximal operators

Consider
min f(x)
If x, is the minimizer of f then

. 1
prox, ;(z+) = argmin {f(ac) + 2—||ac - a:*||2} =z,
x P

Hence, z, is a fixed point for the proximal operator
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Proximal operators

Consider
min f(x)
If x, is the minimizer of f then

. 1
prox, ;(z+) = argmin {f(ac) + 2—||ac - a:*||2} =z,
x P

Hence, z, is a fixed point for the proximal operator
Krasnosel’skii-Mann iteration with prox ;. By applying

Tr1 = (1 — a)z(k) 4+ aprox, (k)

we have that zx — x..
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Splitting operators

Consider the problem

min f(z) + g(z)

To find minimizer x. we could apply

Trp1 = (1 — @)zp + aprox, ;) (k)

Prof. R. Carli @ Control Tools for Distributed Optimization ¢ ADMM via operator theory and distributed optimization 28 |54



Splitting operators

Consider the problem

min f(z) + g(z)

To find minimizer x. we could apply
Trp1 = (1 — @)zp + aprox, ;) (k)

Observations
e Computing prox, ;4 could be difficult

e Computing prox,, and prox,, in a separate way could be easier
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Splitting operators

Consider the problem

min f(z) + g(z)

To find minimizer x. we could apply
Zpr1 = (1 — @)z + proxp(Hg)(mk)

Observations
e Computing prox, ;4 could be difficult

e Computing prox,, and prox,, in a separate way could be easier

Possible alternatives proposed in the literature
e Proximal gradient mapping

e Peaceman Rachford splitting operator
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Splitting operators : proximal gradient algorithm

Consider the problem
min f(z) + g(z)
where
e f differentialble is L-smooth and p strongly convex;

e g convex with non-expensive prox operator

Proximal Gradient Algorithm xj1 = prox,  (zx — pV f(zr))
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Splitting operators : proximal gradient algorithm

Consider the problem

min f(z) + g(z)

where
e f differentialble is L-smooth and p strongly convex;

e g convex with non-expensive prox operator

Proximal Gradient Algorithm xj1 = prox,  (zx — pV f(zr))

Convergence If 0 < p < %, then

k1 = zull* < (1= pp)llar — 2|
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Splitting operators : Peaceman-Rachford

Consider the problem
min f(z) + g(z)

Peaceman-Rachford Splitting (PRS) : Tprs = refl,; o refl,,4

Consider
ze+1 = (1 — )z + aTprs(zk)

Then,
2k = Zx = Ty = prox, (2«)
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Splitting operators : Peaceman-Rachford

Consider the problem

min f(z) + g(z)

Peaceman-Rachford Splitting (PRS) : Tprs = refl,; o refl,,4

Consider
ze+1 = (1 — )z + aTprs(zk)

Then,
2k = Zx = Ty = prox, (2«)

Computationally: An efficient way to compute zx41 = (1 — @)zr + aTprs(2k) is

Tk = prox,, (2x)
&k = prox,; (2xk — 2k)

Zht1 = 2k + 20(&k — xk)
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Duality

Consider
min  fo(x)
s.t fl(x) S 0 = 15 )
hi(z) =0 ¢=1,...,p

where z € R".

Let
e D=2 domf; N (i, domh;

e p* be the optimal solution
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Duality

Consider
min  fo(x)

st. fi(x) <0 i=1,...,m
hi(z) =0 ¢=1,...,p

Let us introduce the Lagrangian function L : R®™ x R™ x RP —» R

Lz, A v) = fol@) + > Aifila) + 3 wihi()
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Duality
Consider

min  fo(x)
st. fi(x) <0 i=1,...,m
hi(z) =0 ¢=1,...,p

Let us introduce the Lagrangian function L : R®™ x R™ x RP —» R

Lz, A v) = fol@) + > Aifila) + 3 wihi()

and, accordingly, let us derive the dual function g : R™ x R? - R

g()\, V) = infprL(m, )\, l/) = infxep <fo($) + Z >\le (.T) =+ Z vihi (33))
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Duality

Consider

min  fo(x)
st. fi(x) <0 i=1,...,m
hi(z) =0 ¢=1,...,p

Let us introduce the Lagrangian function L : R®™ x R™ x RP —» R
L(z, \v) = fo(z) + > Nifi(@) + > viha()
1=1 =1

and, accordingly, let us derive the dual function g : R™ x R? - R

g()\, V) = infxeDL(x, )\, l/) = infxep <fo($) + Z >\le (.T) + Z vihi (33))

Fact g is concave and g(\,v) < p.
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Duality

Lagrange dual problem

max g(A,v)
st. A>0

Let d. be the optimal solution.
Weak duality : d. < p.

Strong duality : d. = p. (zero duality gap condition)
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Whay duality?

Lagrange dual problem

max g\ v)
st. A>0

e dual problem is unconstrained or has simple constraints;

e dual objective is differentiable or has a simple nondifferentiable term
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Dual problem in our case

Question : What is the Lagrangian dual problem associated to

min  f(z) +g(y)

s.t. Ar+ By =c

where z € R, y € R™, A € RP*"™, B € RP*™, c € RP?
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Dual problem in our case

Question : What is the Lagrangian dual problem associated to

min  f(z) +g(y)

s.t. Ar+ By =c
where z € R, y € R™, A € RP*"™, B € RP*™, c € RP?
Lagrangian (A vector of Lagrange multipliers, p > 0)

Lo(z,y,\) = f(z) +g(y) + A (Az + By — )
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Dual problem in our case

Question : What is the Lagrangian dual problem associated to

min  f(z) +g(y)

s.t. Ar+ By =c
where z € R, y € R™, A € RP*"™, B € RP*™, c € RP?
Lagrangian (A vector of Lagrange multipliers, p > 0)

Lo(z,y,)) = f(z) + 9(y) + A (Az + By — ¢)
Dual Function :
d(A\) = min L(z,y, A)
z,Y

= min (f(x) + )\TAJC) —I—myin (g(y) + A (By — c))

dy(X) dg ()
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Dual problem in our case

Dual Problem :
max d(\) = mAin —d(\)
=min ~dy(\) = d, () (%)
Since the original problem
min  f(z) +9(y)

s.t. Ar+ By =c

is defined over convex functions and linear constraints strong duality holds.

We apply iterative KM with PRS operator
zk+1 = (1 — a)zg + aTprs(zk)

to problem in (x).
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PRS operator to dual problem
— min f(z) + 9(2)
miny —ds(A) —dy(A) (%) Iteration of KM with PRS operator

o ds(X) = min, (f(z) + A" Az) zk+1 = (1 — @)z, + aTprs(2k),

e dy(\) =min, (9(y) + A" (By —¢)) or equivalently

(7) TE = proxpg(zk)
(i) &k = prox, ; (2xx — 2x)

(i1i)  zr41 = 2k + 2a(& — Tk)

In our case

(2) py— Prox_,q, (zk)
(’LZ) §k = proxfpdf (2/\k — Zk)
(Z’Ll) Zk4+1 = 2k + 20¢(€k — )\k)
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PRS operator to dual problem
miny —df(A) —dg(A) (%)

e df(\) =min, (f(z) + A" Az)
miny (9(y) + A" (By — ¢))

Computationally

(i) v = argmin {g(y) — =" (By — ) + £]|By —c|*}
Y

A =z — p(Byr — ¢)

min f(z) + g()
Iteration of KM with PRS operator
zor1 = (1 — &)zx + a Trrs(2k),
or equivalently
(7) Tk = prox,, (2k)

(i) &k = prox, ; (2xx — 2x)

(i1i)  zr41 = 2k + 2a(& — Tk)

In our case
(2) py— Prox_,q, (zk)
(’LZ) §k = proxfpdf (2/\k — Zk)
(Z’Ll) Zk4+1 = 2k + 20¢(€k — )\k)
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PRS operator to dual problem
miny —df(A) —dg(A) (%)

e df(A) =min, (f(z) + )\TACL‘)
miny (9(y) + A" (By — ¢))

Computationally

(i) v = argmin {g(y) — =" (By — ) + £]|By —c|*}
Y

Ak =2k — p(Byr — ¢)

(i) =z = argflin {f(m) — 2\ — z1) " Az + gHAmHQ}

ék = 2Ak — 2k — pA:L‘k

min  f(x) + g(x)
Iteration of KM with PRS operator
Zh1 = (1 — a)zx + aTprrs(zk),
or equivalently
(7) T = proxpg(zk)
(i) & = proxpf(ka — 2k)

(i1i)  zr41 = 2k + 2a(& — Tk)

In our case
(2) py— Prox_,q, (zk)
(’L’L) §k = proxfpdf (2>\k — Zk)
(Z’L’L) Zk4+1 = 2k + 20¢(€k — )\k)
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PRS operator to dual problem
miny —d(A) —dg(A) (%)
Computationally

(i) ye = argmin {g(y) — 2. (By — ) + 2| By — cl|’}
Y

A = 2z — p(Byk — ¢)

(i4) xp = argmin {f(a:) — 2\ — z1) T Az + gHAac||2}

&= 2\ — 2 — pAxy

(ZZZ) Zk+1= 2k + Q(I(fk- — >\k)

A bit of redundancy, variable £ and z are not needed
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PRS operator to dual problem
miny —d;(\) = dy(A)  (+)
Computationally
() e =argmin {g(s) — =" (By =)+ §1By — el }

A = 2z — p(Byk — ¢)

(i4) xp = argmin {f(a:) — 2\ — z1) T Az + gHAac||2}
8k= 2 — 2 — pAz; Relaxed ADMM - classical ADMM for o = 1/2)

(#41)  zk+1= 2K + 2a(E — i) Yka1 = arg;nin {L',p(wk,y, A)+p(2a — 1)(By)-r (Azy) + Byi — c}

A bit of redundancy, variable £ and z at Akt1 = Ak + p (Azk + Bykt1 — ) —p(2a0 — 1) (A + Byx — c)

Trt1 = argmin L, (2, Yr+1, Ak+1)
xT
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PRS operator to dual problem
miny —d(A) —dg(A) (%)

Computationally
() yu= argmin {g(y) =2 (By — o)+ £[1By —c|*}
Y

A=z — p(Byx — ¢)
(i4) xp = argmin {f(m) — 2\ — z1) T Az + gHAac||2}
&= 2\ — 2 — pAxy

(ZZZ) Zk+1 = 2k + 2a(£k — >\k)

In our specific distributed optimization problem (A has a specific structure and B is the identity) variable y, A

and & are not needed
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Distributed Relaxed-ADMM

Algorithm ©
Node i keeps in memory z; and {Zij}jENi / \ ;
1. Node i computes z; x+1 as @ —@ i
i /NN
. d;
Ti k+1 = argmin { fi(x;) — Z Zijk T + p21 ||$2H2 ©—0O ®
2. Node ¢ computes and transmits the temporary variable g;_, ; o— —@
for all j € NV;
Gi—j = —Zijk + 20%i k41

3. Node ¢ gathers q;_,; from all j € N;;

4. Node ¢ computes z;j; x+1 as

zijht1 = (1 — a)zijk + agjsi
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Friday Afternoon Trajectory

Distributed Optimization

N

min f(z) = fi(z)

i=1

2(k+1)=(1—a)z(k) + aTprs z(k)

Operator Theory \_) minimize  f(z) + g(y)
subject that Ax + By =c¢

ADMM — Relaxed ADMM
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Distributed Relaxed-ADMM

Remark: So far reliable and synchronous communications.
Question: what about if nodes are not synchronized?

Question: what about if a packet is lost?
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Asynchronous and robust relaxed-ADMM

Algorithm
Suppose node i is active ai iteration k. /.\ _
1. Node i computes ; k41 as ) 1
T /\
Tiht1 = argxrinin filxs) — Z Zijk z; + p;li |\£Ez||2 /.\7.\ / \
JEN o—0 .‘\.

2. Node ¢ computes and transmits the temporary variable g;_ ;
for all j € NV;

Gisj = —Zijk + 20T k41

3. For j € N, if node j receives ¢i—j, then it updates zj; k41
as

Zjik+1 = (L — @)zjik + agimsj
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Convergence results - Asynchronous and robust relaxed-ADMM

Assumption(Asynchronous update and transmission)
At each iteration there is only one node performing the updating step and the transmissions (this node is
randomly chosen)

Assumption(Random packet losses)
Each transmitted packet can be lost accordign to a certain probability.

Proposition (conditions on o and p for convergence)
If 0 < @ <1 and p> 0 then the asynchronous and robust distributed Relaxed ADMM converges almost surely

to the optimal solution.

Proposition (conditions for exponential) convergence
If fi are strongly convex then convergence is exponentially fast in mean-square sense.
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Stochastic Krasnosel'skii-Mann iteration

Let T' be a non-expansive operator

Krasnosel’skii-Mann iteration
Zh1 = (1 — a)zx + aTrrs(zk)

Fori=1,...,N, and for £ > 0, let ; x be a binary random variable such that

PlBik=1]=p: (p:; is constant with the respect to index iteration k)
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Stochastic Krasnosel'skii-Mann iteration

Let T' be a non-expansive operator

Krasnosel’skii-Mann iteration
Zh1 = (1 — a)zx + aTrrs(zk)

Fori=1,...,N, and for £ > 0, let ; x be a binary random variable such that

PlBik=1]=p: (p:; is constant with the respect to index iteration k)

Stochastic Krasnosel'skii-Mann iteration

L -ametalT)], i fu=1
bkl = Zi,k if Bi,k =0
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Stochastic Krasnosel'skii-Mann iteration

Let T' be a non-expansive operator

Krasnosel’skii-Mann iteration
Zh1 = (1 — a)zx + aTrrs(zk)

Fori=1,...,N, and for £ > 0, let ; x be a binary random variable such that

PlBik=1]=p: (p:; is constant with the respect to index iteration k)

Stochastic Krasnosel'skii-Mann iteration

L -ametalT)], i fu=1
bkl = Zi,k if Bi,k =0

Proposition. The trajectory zr, k =0,1,2,..., generated by the Stochastic Krasnosel'skii-Mann iteration
converges almost surely to a fixed point of 7.
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Constrained-coupled optimization

Consider a constraint-coupled optimization problem

N
min Z fi(zi)

T1,..., TN
N
subj. to Z(Hlml —b;))=0

=1

.’Dz‘GXi, 221,,N
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ADMM-oriented reformulation of cc-opt

By manipulating the coupling constraint, the optimization problem can be reframed as

N
Lmin D i)

q1,--,9N =1

subj. to H;z; = qi, i=1,...

, N
N
> (ai—bi)=0
i=1
J]‘iEXi, ’i:l,...,N
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ADMM-oriented cc-opt in compact form

Let
e 1:=(1,...,1)®1I,
e Hy :=diag(Hi,...,HnN)
e collect b= (by,...,by) sothat 176 =3V b

Then, we can write

min f(x)
x,q
subj. to Hqx = q
1'g=1"b
reX

The augmented Lagrangian is
Le(w,q,A) = f(z) + AT (Haz — ¢) + §||Haz — q|?
= f(z) + X" (Haz — q) + 5 |e(Haz — q)|®
= f(z) + gllc(Haz — q) + A|* = 5 IAlI?

Prof. R. Carli @ Control Tools for Distributed Optimization ¢ ADMM via operator theory and distributed optimization 48 |54



Useful result

Consider the constrained projection of z. € RY onto {# € RY | 172 = 3}, obtained as the solution of
L2
min zlle — x|
. T
subj.to 1 z=p
The KKT conditions for this problem read
(:I’* N .IIC) + 1A =0
17z, = 153
From the first we obtain z, = z. — 1\,, which plugged in the second gives 1T z. — N\, = 8. Hence
T
Ax = %(1 Te — ﬁ)
Therefore, the optimal solution can be expressed as
Ty = Te — %1(1Txc - B)
=I—-J)x.+ %18

H 1 T
with J = 11
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ADMM for cc-opt

The ADMM reads
ZTp+1 = argmin f(z) + %HC(de —qr) + )\k”Q
reEX
Gr+1 = argmin ||¢ — (Hazr41 + %)\k)”2
q:quleb

Abt1 = A + ¢ (Ha%r+1 — Qt1)

It holds

Ge+1 = Hawkpr + 22k — F1(1T (Hazpsr + 2A6) —170)
= - J)(Hazg+1 + %)\k) + Jb
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Update simplifications

Substituting qx+1 in the update of Ax+1 gives

Ak+1 =X + C(dekJrl — (I — J)(Hd$k+1 + %)\k) — Jb)
= JX\r + CJ(HdCEk+1 — b)

Remark. Ay remains in the span of 1, namely Ay := 1)\, for all k € N
Hence, the dual update simplifies to a lower-dimension update given by

Akt1 = A\ + %IT(deEkH —b)

Putting back this fact in the expression of g1 results in

Ge+1 = (I — J)(Hazry1 + %1)%) + Jb
— HdCCk+1 — J(Hda:kJrl — b)
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Update simplifications (continued)

Plugging the final expression for g in the optimization step yields

ZTr+1 = argmin f(z) + QLCHC (Hax — Hazxy) + 1Ag + ¢ J(Hazy — b) ||2
rEX N e’
10'k

where we have defined
I ﬁlT(Hda:k —b)

Remark. The following identity holds g = Haxr — 1ok

Exploiting the definition of oy, the (scalar) dual update reads

)\k.t,_l =\ + Ok+1
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ADMM for cc-opt is a parallel algorithm

Each agent ¢ = 1,..., N solves the local problem

Tik+1 € argmin fl(xz) + ZfICHC(Hzxz — H,-ac,',k) + e + O-k;||2

T;EX;

Then, the master node updates the global variables

N
Ok+1 = % (Z(Hi.Ti,kJrl — bz))

i=1

Akt1 = g + Oky1

Remark. The variable oy, is the average of the local feasibility errors ¢ (H;x; 1 — b;)
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Tracking-ADMM

Idea. oy is the average of the local feasibility errors ¢ (H;x; 1 — b;). Hence, we can use the dynamic average
consensus to obtain a distributed algorithm

Introduce a local copy of o, denoted by o; , which is updated according to

i k41 = E Wij0jk + ¢ (HiZs o1 — HiZi k)

JEN;

where we canceled the common terms —b;

Introduce a local copy of A, denoted by A; x, which is updated according to

Aiky1 = E WijAjk + Oi k41

JEN;
The local optimization is

Zik+1 € argmin  f;(z;) + Q*IC”C(ILQSI —Hizi k) +oik + )\i,kHQ

x; EX;
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