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e Distributed gradient methods for consensus optimization
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Consensus optimization (recall)

A consensus optimization (scalar) problem is

r}](neiﬁ Z Ji(x) \\

where each f; : R — R is strongly convex and has Lipschitz continuous gradient @/

Recalling f(z) == JXV: fi(xs) with z == (z1,...,2zN), the gradient method expressed as fi \O
= Xk41 = Xk — alTVf(lxk)
where a > 0 is the stepsize and 1 € RY is the all-one vector
The gradient method can be replicated N times to obtain a parallel algorithm given by
Xk+1
Tht1 = = Jzr — aJVf(Jxg)
Xk+1

where 7, € RN and J = %11-r (factorize % from )
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Frequency-domain characterization of the parallel gradient method

Consider the parallel gradient method
Vi) <
Trt1 = Jxr — aJug
yr = Jak
we | @ o Wk
in feedback with ux = V f(yx). The transfer matrix from ux to y is given by g z—1 e

G(z)=—aJ(zl - J) 'J=—-2%J
where we used the fact that J can be jointly diagonalized® with I, and hence the following identities hold

_ 1 _ _ 1 1 _
_ 1_ z—1 1 _ 1y _ z—1 1_ 1
(zI — J) T { %IN—1:| T, (zl —J) " J=T { %IN—1:| { 0N—1:| T ==J

Remark. One integrator in the direction of 1 and N — 1 deadbeat dynamics in its orthogonal complement

Remark. The gradient operator Vf : RY — RY satisfies

(VI(w) = VIQz) (y— 1) > S7 V() = VI Qz)|® + 25 ly — 1.

LIt holds J=T {1 O } T~ where the first row of T'is 1T and the other N—1 rows complete an orthonormal basis
-1

Prof. I. Notarnicola e Control Methods for Distributed Optimization e Distributed gradient methods for consensus optimization 3|17



Towards a distributed gradient method for consensus optimization

Consider the replicated gradient method

0
Trp1 = Jxp — aJug, zo = 1x

Y = Jxk

in feedback with ur = V f(yx)
Remark. The static map J is crucial to enforce consensus and compute the correct average descent direction
Remark. The algorithm is not amenable to distributed implementation due to the aggregating terms

Consider the following slightly modified scheme

Tpr1r = War — oV f(yr) + o — J)V f(yr), z0 = 2°
—_——
Yk = Tk i

where W € RY*¥ is a symmetric doubly-stochastic matrix, and dy, is a correction term
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Unleashing distributed consensus optimization

Idea. Compensate for the (centralized and static) correction term dj. using a distributed and dynamic controller

A

ug = Vf(yr) .
Same passivity

el -- properties

U, Tpr1 = Wap — aug + dy Yk
Yk = Tk
d € = Qup €k

Two alternative strategies

Uk

dy

Tpy1 = Wap — aug + dj
Yk = Tk

e = h(zg,ur)

Yk

distributed controller

€k

1. dynamic average consensus to track the average of the gradients based on ey = auy

2. integral action to reject the consensus error e := (I — W)xy,
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Strategy 1: distributed gradient method based on dynamic average consensus
Consider the reference signal be e := aur = aV f(zr), the dynamic average consensus reads

Ekt1 = W&k + (I — We, & =0n
di = &k

Then, the closed-loop system results in
Thil W I\ |z I Zo z°
= — V s =
o] Rl 113 R R A P

o=t 0[]

ugp = Vf(yr) -«

up | Thr1 = Waop —aug +di |y
Yk = Tk
dk er = aug €k

Remark. The initialization is not arbitrary

1 =W + (I —Wey
dp, = &k
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Agent perspective of dynamic-average-consensus-based gradient tracking

Each agent i implements the following local updates

Tiktl = E Wi Ty, + &k — QU &, zi0 € R
JEN;
Sikt1 = E wi ik + a(ui,k N E wz‘juj,k)’ &io=0
JEN; JEN;
Yik = Tik

with u; r = V fi(yi,x), where w;; are the entries of W and N; is the neighbor set of agent ¢

Remark. Each agent i receives z; 1 and & x — u; % from its neighbors j € N; O\O

L
b S

3.k
&k —auj i
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Equilibrium manifold for the gradient tracking

Consider the gradient tracking
Ter1| W 1 Tk | I xo_a:o
el =0l fe] e lw e 6] 1oy
The equilibrium point (Zeq, £eq) satisfies

(I =W)xeq = Eeq — aV f(Zeq)
(I =W)eq = a(l = W)V f(zeq)

Premultiplying the first equation by 17 yields
1 ¢eq — al Vf(2eq) =0
which, combined with the second equation and the mass preservation property, results in
oq = aV f(Teq)
Thus it must be (I — W)eq = On. Using the invariance of 17 ¢, —al ' V f(zx), implies that the equilibrium is
] = Lowstie
eq|  [@Vf(1x)
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The transfer matrix of the gradient tracking

The evolution in the error coordinates (z, &) — (&,€) == (z — 1z, — aV f(1x,)) is
el =0 W el e 2] o)
1| [0 W] & w1 |&] T [-Vf(Qa)
o _ T,
gk =yx — 1z, = [I 0] LJ
with @y = Vf(gr + 1z.) — Vf(1z,)

The transfer matrix from uy to g is given by

G(2) = Cl —A)'B=—a[l 0] {ZI W zI_—[W:| - {W[_ I]

=—al@ W) (2 - W) {W{ 1}

— —a(zl - W) (I (= W)W — I))
=—az—1)(zl —-W)?

Remark. Do the parallel, i.e., —-%5J, and the GT algorithms share the same passivity properties?
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Gradient tracking analysis: first loop transformation

G(2)
First, actuate a (positive) feedback action on the plant T !
. _ i ul | ]
U=+ py i :
LY |
“stealing” strong convexity from the cost function f :+ O G(z)
1
The transfer function from @y, to ¢ is Yk
r'—"'—'"—"'“"“""""""I
~ o 1 +
G(z) = (I — pG(2)) ' G(2) O V(- + 1z,) — Vf(1z,) :
| — |
with @, = @ — pgr and §x satisfying the co-coercivity bound i I 1
: ul | :
~T ~ > 1 —~ 112 ] 1
Uk Gk 2 7 (|2 | s !
s V()
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Gradient tracking analysis: second loop transformation

Second, consider a feedforward action on the plant oL

g'—):’/j:gkf Liua

The transfer function from 4y to yx is

A
& |
~ T
<
kol
Q |

G(z) = G(z) — T2 In iy | USSTeseTTTTESeTTETTCUI

L—p

with 4 and 7 satisfying the monotonicity bound

U g >0

HE

~ N
+

—0)

Proposition. For a sufficiently small « the transfer function fa(z) is strictly discrete positive real

Invoking the Passivity theorem, one can show that the origin £ = Ox is an exponentially stable equilibrium, i.e.,

lim ||z — 1lz,.|| =0 at a linear rate
k—oo
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Change of coordinates to obtain the “non-causal’ formulation

The gradient tracking is

Tit1 = Wag + & — aV f(zk), 20 = 2°
Sev1 = W& —a(W =)V f(ze), & =0n

Consider the (nonlinear) change of coordinates
Tk
—
<]

Then, the gradient tracking can be rewritten as

IR ETETN

Tr4+1 = War — asg, To =T

sp+1 = Wik + Vf(zr+1) — Vf(xr), S0 = Vf(fo)

Remark. The initialization is crucial to guarantee convergence of xx to the consensual optimal solution 1z,
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Strategy 2: distributed gradient method based on integral action
Given the consensus error ey := (I — W)z, a Proportional-Integral (Pl) controller reads

1 =&k +en, go=¢°
dr = K&, + Kpeg

for properly specified stabilizing gains K; (integral) and Kp (proportional)

For K = —(I — W) and Kp = 0, the closed-loop system results in

ZTpt1 = Wap — (I — W)€k — aV f(xk) urp = V£(yx) <

i1 =&+ (I — W)z

up | Thr1 = Wap —aug +di |y
Yk = Tk
dk e = (I — W)z €k

Remark. The initialization is arbitrary

Skt1 =&k +ex
dp =—(I —W)&
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Agent perspective of integral-action-based distributed gradient method

Each agent i implements the following local updates

Ti k41 = E Wi Tk — ik + E wi;&j e — 0Ui g, Tio €R

JEN; JEN;
ikt =&k + Tik — E Wi Tj ks §io€R
JEN;
Yi,k = Tik

with u; r = V fi(yi,x), where w;; are the entries of the matrix W and N; is the neighbor set of agent ¢

Remark. Each agent i receives z; . and ; x from its neighbors j € N; O\O

I\

O/O

e o

J»

ik O
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Equilibrium manifold for the int-act distributed gradient method

Consider the integral-action-based distributed gradient method
Tht1 w —(I =W)] [zx I o z°
= — v , =
{@H] {(17 wy 1 le] o] V@ g T e
The equilibrium point (Zeq, &eq) satisfies

(I =W)teq = —(I = W)keq — aV f(2eq)
ea = Cea + (I = W)zeq

The second equation imposes Teq € span 1, hence 17V f(eq) =0

This implies that the equilibrium is
Teq| 1x,
fea] (I - W)V f(1x,)
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Accelerated distributed consensus optimization

The (centralized) heavy-ball method is
Xkt1 = (1 + B)xk — Bax — oV f(xk)
9k+1 = Xk

for some 8 > 0. It can be replicated N times to obtain a parallel algorithm given by

S
Thi1 = = J((1+ Byw - Bar ) — @V f (Jax)
[Xk+1]
-
Qrk+1 = = Tk
Ldk+1 ]
Yk = Jxk

with ux = V f(ur). The accelerated algorithm is not amenable to distributed implementation because of
e the consensus mixing J((1 + B)zr — Bqx)

e the average update direction Jug
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Accelerated distributed optimization

Idea. Replace

J((1+ Bz — Bar) — W((1 + B)zx — Bar)

and compensate for the aggregating term di, = a(I — J)uy using a
distributed and dynamic controller based, e.g., on the integral action

o1 =&+ (I —W)zy,
d, = —(1 —W)&,

up = Vf(yr)

A

1 = (1+B)Wap—BWqp —auy + di
Ug Yk
> Qky1 =Tk >

g Y = Tg P
k
e = h(zk, qr, ug)

distributed controller <

Remark. Do the centralized and distributed accelerated algorithms share the same passivity properties?
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