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Lecture outline

e The ADMM for constraint-coupled optimization

e The distributed ADMM fo constraint-coupled optimization
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Constraint-coupled optimization (recall)

A constraint-coupled optimization problem is

N
zﬂnin Z filxs)

LLTN P
N O\O
subj. to Z(Hzmz — bz) =0 \\
i=1
T; € Xy, i=1,...,N O O
—
with z; € R™, H; € RP*™ b, € RP, and X; C R™ / \

~d—

Let H;,b;
N
o f(z)=>" fi(z:) with z :== (21,...,2N)
=1
e Hy :=diag(Hi,...,Hn)
e b:=(b1,...,bn), sothat 176 =3

e X =X X --- X XN
Prof. I. Notarnicola ® Control Methods for Distributed Optimization ¢ ADMM and distributed ADMM 2|14



ADMM for constraint-coupled optimization

Recall that the ADMM results in the following updates: for all k € N perform

Try1 € argmin f(x) + o |lc (Haw — Hawe) + 1A + 1ok |?

xTE

Ok+1 = %1T(Hd$k+1 — b)
)\k+1 = )\}g + Ok+1

with ¢ > 0, where o € RP? is the feasibility error and Ay € RP is the Lagrange multiplier

Remark. It is a parallel optimization algorithm:

e N “workers” solve local optimization problems, for all i =1,..., N perform

Ti41 € argmin fi(z:) + 5= |le (Hizi — Hizir) + M + o)
x; €EX;

e a master node updates the feasibility error and the dual variable
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Convergence result of the ADMM algorithm

Theorem. Let the constraint-coupled optimization problem be a convex program, then
e the dual variable {\; }ren converges to the optimal Lagrange multiplier A,

e the primal variables {z1 1, ..., N,k }ren converge to the optimal primal solution =, == (Z1,«,...,ZN %)

Remark. Uniqueness of the primal-dual solution pair (x., A+) can be relaxed
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Control-oriented ADMM reformulation
Absorbing the variable o = £17 (Hazr — b) yields
Tyl € arzgemin f(@) + £lle (Haw — Hawr) + 1k + ¢ J(Hazi — b)||?
Nei1 = Mo + 17 (Hazrs1 — b)

with initial conditions zg € X and A\p € R?
Goal. Want to highlight a Lur'e system

The updates can be further manipulated to obtain

Tr41 € argmin f(z) + 2 |lc(Hazw — b) + 1\ — ¢ (I — J)(Hazi — b) 1
zEX

exogenous information
-
Met1 =M + o1 (Hazry1 — b)
—_———

update direction

Remark. The exogenous information involves a delayed version of the update direction
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The ADMM for constraint-coupled optimization is a feedback system

Introducing vy as a filtered, delayed version of the update direction ¢ (Hazx+1 — b) yields

Ak+1 = A + ﬁlTuk

Ve+1 = (I — J)uk

optimization <
Yk = 1, — vk

where the output yi represents the exogenous information necessary
to compute the input ux by solving the following optimization step

" A1 = S, + Jug -
k
V41 = (I — J)uk >

A\

Tpr1 € argmin f(x) + o2 [le (Haz — b) + ye||®
reX
Y = JAp — vk

Uk = C(dek-i,-l — b)

Remark. The optimization step represents a static (memoryless) nonlinearity from yi to wu

Remark. The feedback system is a Lur'e system
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Algorithm analysis: error coordinates reformulation

An equivalent (though not implementable) reformulation is obtained by “replacing” b with Hqz.

Tpi1 € argmin f(2) + o |lc (Haz — Haze) + 1A + yx — 1\ + ¢ (Haz. — Hab) ||?
TEX
Uk = 1k — 1A — (v — i)
N— N——

Aktl — A = A — A + %11— c¢(Haxp+1 — Hazy) Xk T
\—’.‘/—/ ~
Ak+1 Uk

V41 — Ux = (.I — J)ﬁk
\T/_/
Vk+1

where (4, A«) is the primal-dual solution of the problem and v, := ¢ (Hax. — b)
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Algorithm analysis: error coordinates reformulation

Finally, we obtain the error dynamics given by

5\k+1 =+ %11—’&1@

optimization -«

s = (I — J)iix
Gk = 1 — Ok
Nep1] _[J O] [Ak J 1.
Uy [f’kﬂ B {0 O] {@J * L—J ol
in feedback with @y := ¢(gx), given by Ge=[J —I] [Sjk}
O

zT € argmin f(z) + =|le(Hazw — Hazy) + 1A + ik |?
TEX

ik = c(Hazt — Hazy)

Goal. Study the properties of the interconnection focusing on the individual components
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Passivity-based stability analysis

For the convergence/stability analysis of ADMM, let
e the (replicated) linear plant be represented with its transfer matrix G(z)

e the nonlinearity be replaced by its sector bound characterization (§jx + @ix) ' ix < 0 for all k € N

I
>

I
©
~
<
>
-
A

(G + i) T <0

A

o] AR oL ]
k= -1 [%\flj > G(z) .
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Passivity-based analysis: loop transformation

The optimization step exhibits an excess of passivity in its output @ (OFP)
that can be transferred through a loop transformation

The transfer matrix from 4y to ¥ = §x + U is

G(z) = C(zl — A)'B+ I

—1 +|
i af@-DI o0 J .
- [J I] { 0 zI I—J +1 - J: Tk
=LJ-Lu-J)+1 S :
1
z [y = I
o T N N G & ot
= Iv-n :
i
1

where 5, and @y satisfies the monotonicity condition gy @ < 0

Remark. The diagonal entries of (A?(z) are discrete positive real. Hence, the system is passive
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Convergence result for the ADMM

Proposition. The feedback interconnection of two passive systems is passive

Being é(z) discrete positive real, there exists a quadratic storage
function V' and matrices M, and M, satisfying

V( P"““
VEk+1

with @x = ¢(7k) such that 3 ¢(Gx) < 0

) -v([

T A 12
|) <t - o [2] + 2

Grar <0

Ug | ~

\4

G(z) discrete positive real

A

It implies that klim U =0 and a Lasalle argument (with a refined feedforward gain D # I) ensures that also
— 00

lim A\ = A&
k— o0

lim T+1 = Tx
k—oc0
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Some questions

The ADMM for constraint-coupled optimization is
N1 = I + ik
Vg1 = (I — J)uk
Gk = J )k — O
with o, = (Z)(gk)

Remark. It enjoys a sparsity pattern, e.g., in the nonlinear map ¢, but also an aggregating averaging term I—J

e Is it possible to implement the ADMM in a distributed fashion?

e |s it possible to exploit the system-theoretic approach to design a distributed algorithm?
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Unleashing distributed constraint-coupled optimization

Isolating the aggregating terms in the linear update yields
Mer1 = I + g — (I — J)in

Ukt1 = (I — J)ig

G = I — Uk

As before, replace J Ay — Wi and handle the aggregating termdy, := (I—J)uy, through a distributed controller

] < g = ¢(Jk) <

g = oY) >

Mep1 = Whg + iy — di B Met1 = WAy + g — dy,

U - [ ~
k Vg1 = dy Yk |, k V41 = dg -

Y
Yyv

Gk = W, —

Gk = WAy, — Tk en dn P

dp. -
e = h(Ag, Oy, Uk)

er = Ug

A

di, = — Jeyg < distributed controller

Prof. I. Notarnicola @ Control Methods for Distributed Optimization ¢ ADMM and distributed ADMM 13 | 14



Toward a distributed implementation of the ADMM

The nonlinearity stays unchanged and, hence, decoupled across the agents

U1,k é1(91,%)
Uk = | — k= o(gk) = :
UN & én (k)
Two alternative strategies for the distributed controller are S . A B
U = ¢(Jk) <
1. the dynamic average consensus to track the average
of the update direction ey = @ = ¢(Jx) - -
. . . A1 = WAy + dg — dg
2. the integral action to reject the consensus error g 5 —d Tk
e = ([_W))\k > k-}:l— k~ ] >
. Uk = Wf\k — Uk on
er = h(Ag, Ok, Ux)
distributed controller -«
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