Control Methods for Distributed Optimization ADMM and distributed ADMM

Prof. Ivano Notarnicola

Dept. of Electrical, Electronic, Information Eng.
Università di Bologna
ivano.notarnicola@unibo.it

Prof. Ruggero Car

Dept. of Information Engineering Università di Padova ruggero.carli@unipd.it

SIDRA Ph.D. Summer School July, 10-12 2025 • Bertinoro, Italy

Lecture outline

- The ADMM for constraint-coupled optimization
- The distributed ADMM fo constraint-coupled optimization

Constraint-coupled optimization (recall)

A constraint-coupled optimization problem is

$$\min_{x_1,\dots,x_N} \ \sum_{i=1}^{n} f_i(x_i)$$

$$\text{subj. to } \sum_{i=1}^{N} (H_i x_i - b_i) = 0$$

$$x_i \in \mathcal{X}_i, \qquad i = 1,\dots,N$$
 with $x_i \in \mathbb{R}^{n_i}$, $H_i \in \mathbb{R}^{p \times n_i}$, $b_i \in \mathbb{R}^p$, and $\mathcal{X}_i \subseteq \mathbb{R}^{n_i}$

Let

•
$$f(x)\coloneqq\sum_{i=1}^N f_i(x_i)$$
 with $x\coloneqq(x_1,\ldots,x_N)$

- $H_d := \operatorname{diag}(H_1, \ldots, H_N)$
- $b \coloneqq (b_1, \dots, b_N)$, so that $\mathbf{1}^\top b = \sum_{i=1}^N b_i$
- $\mathcal{X} \coloneqq \mathcal{X}_1 \times \cdots \times \mathcal{X}_N$

ADMM for constraint-coupled optimization

Recall that the ADMM results in the following updates: for all $k \in \mathbb{N}$ perform

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \| c (H_{d}x - H_{d}x_{k}) + \mathbf{1}\lambda_{k} + \mathbf{1}\sigma_{k} \|^{2}$$

$$\sigma_{k+1} = \frac{c}{N} \mathbf{1}^{\top} (H_{d}x_{k+1} - b)$$

$$\lambda_{k+1} = \lambda_{k} + \sigma_{k+1}$$

with c>0, where $\sigma_k\in\mathbb{R}^p$ is the feasibility error and $\lambda_k\in\mathbb{R}^p$ is the Lagrange multiplier

Remark. It is a parallel optimization algorithm:

• N "workers" solve local optimization problems, for all $i=1,\ldots,N$ perform

$$x_{i,k+1} \in \underset{x_i \in \mathcal{X}_i}{\operatorname{argmin}} f_i(x_i) + \frac{1}{2c} \|c(H_i x_i - H_i x_{i,k}) + \lambda_k + \sigma_k\|^2$$

a master node updates the feasibility error and the dual variable

Convergence result of the ADMM algorithm

Theorem. Let the constraint-coupled optimization problem be a convex program, then

- the dual variable $\{\lambda_k\}_{k\in\mathbb{N}}$ converges to the optimal Lagrange multiplier λ_\star
- the primal variables $\{x_{1,k},\ldots,x_{N,k}\}_{k\in\mathbb{N}}$ converge to the optimal primal solution $x_\star\coloneqq (x_{1,\star},\ldots,x_{N,\star})$

Remark. Uniqueness of the primal-dual solution pair (x_\star,λ_\star) can be relaxed

Control-oriented ADMM reformulation

Absorbing the variable $\sigma_k = \frac{c}{N} \mathbf{1}^{\top} (H_{\mathrm{d}} x_k - b)$ yields

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \ f(x) + \frac{1}{2c} \| c (H_{d}x - H_{d}x_{k}) + \mathbf{1}\lambda_{k} + c J (H_{d}x_{k} - b) \|^{2}$$
$$\lambda_{k+1} = \lambda_{k} + \frac{c}{N} \mathbf{1}^{\top} (H_{d}x_{k+1} - b)$$

with initial conditions $x_0 \in \mathcal{X}$ and $\lambda_0 \in \mathbb{R}^p$

Goal. Want to highlight a Lur'e system

The updates can be further manipulated to obtain

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \ f(x) + \frac{1}{2c} \| c \left(H_{\mathrm{d}} x - b \right) + \underbrace{\mathbf{1} \lambda_k - c \left(I - J \right) \left(H_{\mathrm{d}} x_k - b \right)}_{\text{exogenous information}} \|^2$$

$$\lambda_{k+1} = \lambda_k + \frac{c}{N} \mathbf{1}^\top \underbrace{\left(H_{\mathrm{d}} x_{k+1} - b \right)}_{\text{update direction}}$$

Remark. The exogenous information involves a delayed version of the update direction

The ADMM for constraint-coupled optimization is a feedback system

Introducing v_k as a filtered, delayed version of the update direction $c(H_dx_{k+1}-b)$ yields

$$\lambda_{k+1} = \lambda_k + \frac{1}{N} \mathbf{1}^\top u_k$$
$$v_{k+1} = (I - J) u_k$$
$$y_k = \mathbf{1} \lambda_k - v_k$$

where the *output* y_k represents the exogenous information necessary to compute the *input* u_k by solving the following optimization step

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \|c(H_{d}x - b) + y_{k}\|^{2}$$
$$u_{k} = c(H_{d}x_{k+1} - b)$$

Remark. The optimization step represents a *static* (memoryless) nonlinearity from y_k to u_k

Remark. The feedback system is a Lur'e system

Algorithm analysis: error coordinates reformulation

An equivalent (though not implementable) reformulation is obtained by "replacing" b with $H_{\rm d}x_{\star}$

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \| c (H_{d}x - H_{d}x_{\star}) + \mathbf{1}\lambda_{\star} + \underbrace{y_{k} - \mathbf{1}\lambda_{\star} + c (H_{d}x_{\star} - H_{d}b)}_{\tilde{y}_{k}} \|^{2}$$

$$\underbrace{\lambda_{k+1} - \lambda_{\star}}_{\tilde{\lambda}_{k+1}} = \lambda_{k} - \lambda_{\star} + \frac{1}{N}\mathbf{1}^{\top}\underbrace{c (H_{d}x_{k+1} - H_{d}x_{\star})}_{\tilde{u}_{k}}$$

$$\underbrace{v_{k+1} - v_{\star}}_{\tilde{v}_{k+1}} = (I - J)\tilde{u}_{k}$$

where $(x_{\star}, \lambda_{\star})$ is the primal-dual solution of the problem and $v_{\star} \coloneqq c (H_{\rm d} x_{\star} - b)$

Algorithm analysis: error coordinates reformulation

Finally, we obtain the error dynamics given by

$$\begin{split} \tilde{\lambda}_{k+1} &= \tilde{\lambda}_k + \frac{1}{N} \mathbf{1}^\top \tilde{u}_k \\ \tilde{v}_{k+1} &= (I - J) \tilde{u}_k \\ \tilde{y}_k &= \mathbf{1} \tilde{\lambda}_k - \tilde{v}_k \end{split}$$

in feedback with $\tilde{u}_k \coloneqq \phi(\tilde{y}_k)$, given by

$$x^{+} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \|c(H_{d}x - H_{d}x_{\star}) + \mathbf{1}\lambda_{\star} + \tilde{y}_{k}\|^{2}$$

$$\tilde{u}_k = c \left(H_{\rm d} x^+ - H_{\rm d} x_{\star} \right)$$

optimization $\tilde{u}_{k} = \begin{bmatrix} \tilde{\lambda}_{k+1} \\ \tilde{v}_{k+1} \end{bmatrix} = \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{\lambda}_{k} \\ \tilde{v}_{k} \end{bmatrix} + \begin{bmatrix} J \\ I-J \end{bmatrix} \tilde{u}_{k}$ $\tilde{y}_{k} = \begin{bmatrix} J & -I \end{bmatrix} \begin{bmatrix} \tilde{\lambda}_{k} \\ \tilde{v}_{k} \end{bmatrix}$

Goal. Study the properties of the interconnection focusing on the individual components

Passivity-based stability analysis

For the convergence/stability analysis of ADMM, let

- the (replicated) linear plant be represented with its transfer matrix G(z)
- the nonlinearity be replaced by its sector bound characterization $(\tilde{y}_k + \tilde{u}_k)^{\top} \tilde{u}_k \leq 0$ for all $k \in \mathbb{N}$

Passivity-based analysis: loop transformation

The optimization step exhibits an excess of passivity in its output \tilde{u}_k (OFP) that can be transferred through a loop transformation

The transfer matrix from \tilde{u}_k to $\hat{y}_k \coloneqq \tilde{y}_k + \tilde{u}_k$ is

$$\widehat{G}(z) = C(zI - A)^{-1}B + I_{pN}$$

$$= \begin{bmatrix} J & -I \end{bmatrix} \begin{bmatrix} (z - 1)I & 0 \\ 0 & zI \end{bmatrix}^{-1} \begin{bmatrix} J \\ I - J \end{bmatrix} + I$$

$$= \frac{1}{z-1}J - \frac{1}{z}(I - J) + I$$

$$= T \begin{bmatrix} \frac{z}{z-1}I_p \\ \frac{z-1}{z}I_{p(N-1)} \end{bmatrix} T^{-1}$$

where \widehat{y}_k and \widetilde{u}_k satisfies the monotonicity condition $\widehat{y}_k^\top \widetilde{u}_k \leq 0$

Remark. The diagonal entries of $\widehat{G}(z)$ are discrete positive real. Hence, the system is passive

Convergence result for the ADMM

Proposition. The feedback interconnection of two passive systems is passive

Being $\widehat{G}(\mathbf{z})$ discrete positive real, there exists a quadratic storage function V and matrices M_y and M_u satisfying

$$\begin{split} V\Bigg(\begin{bmatrix} \tilde{\lambda}_{k+1} \\ \tilde{v}_{k+1} \end{bmatrix}\Bigg) - V\Big(\begin{bmatrix} \tilde{\lambda}_k \\ \tilde{v}_k \end{bmatrix}\Big) &\leq \widehat{y}_k^\top \tilde{u}_k - \frac{1}{2} \Big\| M_y \begin{bmatrix} \tilde{\lambda}_k \\ \tilde{v}_k \end{bmatrix} + M_u \tilde{u}_k \Big\|^2 \end{split}$$
 with $\tilde{u}_k = \tilde{\phi}(\widehat{y}_k)$ such that $\widehat{y}_k^\top \tilde{\phi}(\widehat{y}_k) \leq 0$

It implies that $\lim_{k\to\infty} \widehat{y}_k^\top \widetilde{u}_k = 0$ and a Lasalle argument (with a refined feedforward gain $D \neq I$) ensures that also

$$\lim_{k \to \infty} \lambda_k = \lambda_\star$$
$$\lim_{k \to \infty} x_{k+1} = x_\star$$

Some questions

The ADMM for constraint-coupled optimization is

$$\begin{split} \tilde{\lambda}_{k+1} &= J\tilde{\lambda}_k + J\tilde{u}_k \\ \tilde{v}_{k+1} &= (I-J)\tilde{u}_k \\ \tilde{y}_k &= J\tilde{\lambda}_k - \tilde{v}_k \end{split}$$

with $\tilde{u}_k = \phi(\tilde{y}_k)$

Remark. It enjoys a sparsity pattern, e.g., in the nonlinear map ϕ , but also an aggregating averaging term I-J

- Is it possible to implement the ADMM in a distributed fashion?
- Is it possible to exploit the system-theoretic approach to design a distributed algorithm?

Unleashing distributed constraint-coupled optimization

Isolating the aggregating terms in the linear update yields

$$\begin{split} \tilde{\lambda}_{k+1} &= J\tilde{\lambda}_k + \tilde{u}_k - (I - J)\tilde{u}_k \\ \tilde{v}_{k+1} &= (I - J)\tilde{u}_k \\ \tilde{y}_k &= J\tilde{\lambda}_k - \tilde{v}_k \end{split}$$

As before, replace $J\tilde{\lambda}_k \longmapsto W\tilde{\lambda}_k$ and handle the aggregating term $d_k \coloneqq (I-J)\tilde{u}_k$ through a distributed controller

Prof. I. Notarnicola • Control Methods for Distributed Optimization • ADMM and distributed ADMM 13 | 14

Toward a distributed implementation of the ADMM

The nonlinearity stays unchanged and, hence, decoupled across the agents

$$\tilde{y}_k = \begin{bmatrix} \tilde{y}_{1,k} \\ \vdots \\ \tilde{y}_{N,k} \end{bmatrix} \quad \longmapsto \quad \tilde{u}_k = \phi(\tilde{y}_k) = \begin{bmatrix} \phi_1(\tilde{y}_{1,k}) \\ \vdots \\ \phi_N(\tilde{y}_{N,k}) \end{bmatrix}$$

Two alternative strategies for the distributed controller are

- 1. the *dynamic average consensus* to track the average of the update direction $e_k := \tilde{u}_k = \phi(\tilde{y}_k)$
- 2. the integral action to reject the consensus error $e_k := (I-W)\tilde{\lambda}_k$

