Control Tools for Distributed Optimization ADMM and distributed ADMM

Prof. Ivano Notarnicola

Dept. of Electrical, Electronic, Information Eng. Università di Bologna ivano.notarnicola@unibo.it Prof. Ruggero Carli

Dept. of Information Engineering Università di Padova ruggero.carli@unipd.it

SIDRA Ph.D. Summer School July, 10-12 2025 • Bertinoro, Italy

Lecture outline

- The ADMM fo constraint-coupled optimization
- The distributed ADMM fo constraint-coupled optimization

Constraint-coupled optimization (recall)

A constraint-coupled optimization problem is

$$egin{array}{ll} \min_{x_1,\ldots,x_N} & \sum_{i=1}^N f_i(x_i) \ & ext{subj. to } & \sum_{i=1}^N (H_i x_i - b_i) = 0 \ & x_i \in \mathcal{X}_i, \qquad i=1,\ldots,N \end{array}$$

with $x_i \in \mathbb{R}^{n_i}$, $H_i \in \mathbb{R}^{p imes n_i}$, $b_i \in \mathbb{R}^p$, and $\mathcal{X}_i \subseteq \mathbb{R}^{n_i}$

Let

•
$$f(x) \coloneqq \sum_{i=1}^{N} f_i(x_i)$$
 with $x \coloneqq (x_1, \dots, x_N)$

• $H_{\mathrm{d}} \coloneqq \mathrm{diag}(H_1, \ldots, H_N)$

•
$$b \coloneqq (b_1, \ldots, b_N)$$
, so that $\mathbf{1}^\top b = \sum_{i=1}^N b_i$

• $\mathcal{X} \coloneqq \mathcal{X}_1 \times \cdots \times \mathcal{X}_N$

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 2 | 21

ADMM for constraint-coupled optimization

Recall that the ADMM results in the following updates: for all $k \in \mathbb{N}$ perform

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \| c (H_{d}x - H_{d}x_{k}) + \mathbf{1}\lambda_{k} + \mathbf{1}\sigma_{k} \|^{2}$$
$$\sigma_{k+1} = \frac{c}{N} \mathbf{1}^{\top} (H_{d}x_{k+1} - b)$$
$$\lambda_{k+1} = \lambda_{k} + \sigma_{k+1}$$

with c > 0, where $\sigma_k \in \mathbb{R}^p$ is the *feasibility error* and $\lambda_k \in \mathbb{R}^p$ is the Lagrange multiplier

Remark. It is a *parallel* optimization algorithm:

• N "workers" solve local optimization problems, for all $i = 1, \ldots, N$ perform

$$x_{i,k+1} \in \underset{x_i \in \mathcal{X}_i}{\operatorname{argmin}} f_i(x_i) + \frac{1}{2c} \| c \left(H_i x_i - H_i x_{i,k} \right) + \lambda_k + \sigma_k \|^2$$

• a master node updates the feasibility error and the dual variable

Convergence result of the ADMM algorithm

Theorem. Let the constraint-coupled optimization problem be a convex program, then

- the dual variable $\{\lambda_k\}_{k\in\mathbb{N}}$ converges to the optimal Lagrange multiplier λ_\star
- the primal variables $\{x_{1,k},\ldots,x_{N,k}\}_{k\in\mathbb{N}}$ converge to the optimal primal solution $x_\star\coloneqq(x_{1,\star},\ldots,x_{N,\star})$

Remark. Uniqueness of the primal-dual solution pair (x_\star,λ_\star) can be relaxed

Control-oriented ADMM reformulation

Absorbing the variable $\sigma_k = \frac{c}{N} \mathbf{1}^{\top} (H_{\mathrm{d}} x_k - b)$ yields

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \| c \left(H_{\mathrm{d}} x - H_{\mathrm{d}} x_k \right) + \mathbf{1} \lambda_k + c J \left(H_{\mathrm{d}} x_k - b \right) \|^2$$

$$\lambda_{k+1} = \lambda_k + \frac{c}{N} \mathbf{1}^\top (H_{\mathrm{d}} x_{k+1} - b)$$

with initial conditions $x_0 \in \mathcal{X}$ and $\lambda_0 \in \mathbb{R}^p$

Goal. Want to highlight a Lur'e system

The updates can be further manipulated to obtain

$$\begin{aligned} x_{k+1} &\in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \quad f(x) + \frac{1}{2c} \| c \left(H_{\mathrm{d}} x - b \right) + \underbrace{\mathbf{1}\lambda_k - c \left(I - J \right) \left(H_{\mathrm{d}} x_k - b \right)}_{\text{exogenous information}} \|^2 \\ \lambda_{k+1} &= \lambda_k + \frac{c}{N} \mathbf{1}^\top \underbrace{\left(H_{\mathrm{d}} x_{k+1} - b \right)}_{\text{update direction}} \end{aligned}$$

Remark. The exogenous information involves a delayed version of the update direction

The ADMM for constraint-coupled optimization is a feedback system

Introducing v_k as a filtered, delayed version of the update direction $c(H_d x_{k+1} - b)$ yields

$$\lambda_{k+1} = \lambda_k + \frac{1}{N} \mathbf{1}^\top u_k$$
$$v_{k+1} = (I - J)u_k$$
$$y_k = \mathbf{1}\lambda_k - v_k$$

where the *output* y_k represents the exogenous information necessary to compute the *input* u_k by solving the following optimization step

$$x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \|c(H_{d}x - b) + y_{k}\|^{2}$$
$$u_{k} = c(H_{d}x_{k+1} - b)$$

Remark. The optimization step represents a *static (memoryless) nonlinearity* from y_k to u_k

Remark. The feedback system is a Lur'e system

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 6 | 21

Algorithm analysis: error coordinates reformulation

An equivalent (though not implementable) reformulation is obtained by "replacing" b with $H_{\rm d}x_{\star}$

$$\begin{aligned} x_{k+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + \frac{1}{2c} \| c \left(H_{\mathrm{d}} x - H_{\mathrm{d}} x_{\star} \right) + \mathbf{1} \lambda_{\star} + \underbrace{y_{k} - \mathbf{1} \lambda_{\star} + c \left(H_{\mathrm{d}} x_{\star} - H_{\mathrm{d}} b \right)}_{\tilde{y}_{k} := \underbrace{\mathbf{1} \lambda_{k} - \mathbf{1} \lambda_{\star}}_{\tilde{\lambda}_{k}} - \underbrace{(v_{k} - v_{\star})}_{\tilde{v}_{k}} \|^{2} \\ \underbrace{\lambda_{k+1} - \lambda_{\star}}_{\tilde{\lambda}_{k+1}} = (I - J) \tilde{u}_{k} \end{aligned}$$

where (x_\star,λ_\star) is the primal-dual solution of the problem and $v_\star\coloneqq c\,(H_{\mathrm{d}}x_\star-b)$

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 7 | 21

Algorithm analysis: error coordinates reformulation

Finally, we obtain the error dynamics given by

Goal. Study the properties of the interconnection focusing on the individual components

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 8 | 21

Passivity-based stability analysis

For the convergence/stability analysis of ADMM, let

- the (replicated) linear plant be represented with its *transfer matrix* G(z)
- the nonlinearity be replaced by its sector bound characterization $(\tilde{y}_k + \tilde{u}_k)^\top \tilde{u}_k \leq 0$ for all $k \in \mathbb{N}$

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 9 | 21

Passivity-based analysis: loop transformation

The optimization step exhibits an excess of passivity in its output \tilde{u}_k (OFP) that can be transferred through a loop transformation

The transfer matrix from \tilde{u}_k to $\hat{y}_k := \tilde{y}_k + \tilde{u}_k$ is $\hat{G}(z) = C(zI - A)^{-1}B + I_{pN}$ $= \begin{bmatrix} J & -I \end{bmatrix} \begin{bmatrix} (z - 1)I & 0 \\ 0 & zI \end{bmatrix}^{-1} \begin{bmatrix} J \\ I - J \end{bmatrix} + I$ $= \frac{1}{z - 1}J - \frac{1}{z}(I - J) + I$ $= T \begin{bmatrix} \frac{z}{z - 1}I_p \\ \frac{z - 1}{z}I_{p(N-1)} \end{bmatrix} T^{-1}$

where \widehat{y}_k and \widetilde{u}_k satisfies the monotonicity condition $\widehat{y}_k^\top \widetilde{u}_k \leq 0$

Remark. The diagonal entries of $\widehat{G}(z)$ are *discrete positive real*. Hence, the system is *passive*

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 10 | 21

Convergence result for the ADMM

Proposition. The feedback interconnection of two passive systems is passive

Being $\widehat{G}(z)$ discrete positive real, there exists a quadratic storage function V and matrices M_y and M_u satisfying

$$V\left(\begin{bmatrix}\tilde{\lambda}_{k+1}\\\tilde{v}_{k+1}\end{bmatrix}\right) - V\left(\begin{bmatrix}\tilde{\lambda}_{k}\\\tilde{v}_{k}\end{bmatrix}\right) \le \hat{y}_{k}^{\top}\tilde{u}_{k} - \frac{1}{2}\left\|M_{y}\begin{bmatrix}\tilde{\lambda}_{k}\\\tilde{v}_{k}\end{bmatrix} + M_{u}\tilde{u}_{k}\right\|^{2}$$
with $\tilde{u}_{k} = \tilde{\phi}(\hat{y}_{k})$ such that $\hat{y}_{k}^{\top}\tilde{\phi}(\hat{y}_{k}) \le 0$

$$\tilde{g}_{k}(\hat{y}_{k}) = 0$$

$$\tilde{g}_{k}(\hat{y}_{k}) = 0$$

$$\tilde{g}_{k}(\hat{y}_{k}) = 0$$

$$\tilde{g}_{k}(\hat{y}_{k}) = 0$$

It implies that $\lim_{k \to \infty} \widehat{y}_k^\top \widetilde{u}_k = 0$ and a Lasalle argument (with a refined feedforward gain $D \neq I$) ensures that also

 $\lim_{k \to \infty} \lambda_k = \lambda_\star$ $\lim_{k \to \infty} x_{k+1} = x_\star$

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 11 | 21

Some questions

The ADMM for constraint-coupled optimization is

$$\begin{split} \tilde{\lambda}_{k+1} &= J\tilde{\lambda}_k + J\tilde{u}_k \\ \tilde{v}_{k+1} &= (I-J)\tilde{u}_k \\ \tilde{y}_k &= J\tilde{\lambda}_k - \tilde{v}_k \end{split}$$

with $\tilde{u}_k = \phi(\tilde{y}_k)$

Remark. It enjoys a *sparsity pattern*, e.g., in the nonlinear map ϕ , but also an aggregating averaging term I-J

- Is it possible to implement the ADMM in a distributed fashion?
- Is it possible to exploit the system-theoretic approach to design a distributed algorithm?

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 12 | 21

Unleashing distributed constraint-coupled optimization

Isolating the aggregating terms in the linear update yields

$$\begin{split} \tilde{\lambda}_{k+1} &= J\tilde{\lambda}_k + \tilde{u}_k - (I - J)\tilde{u}_k \\ \tilde{v}_{k+1} &= (I - J)\tilde{u}_k \\ \tilde{y}_k &= J\tilde{\lambda}_k - \tilde{v}_k \end{split}$$

As before, replace $J\tilde{\lambda}_k \mapsto W\tilde{\lambda}_k$ and handle the aggregating term $d_k \coloneqq (I-J)\tilde{u}_k$ through a *distributed controller*

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 13 | 21

Toward a distributed implementation of the ADMM

The nonlinearity stays unchanged and, hence, decoupled across the agents

$$\tilde{y}_k = \begin{bmatrix} \tilde{y}_{1,k} \\ \vdots \\ \tilde{y}_{N,k} \end{bmatrix} \quad \longmapsto \quad \tilde{u}_k = \phi(\tilde{y}_k) = \begin{bmatrix} \phi_1(\tilde{y}_{1,k}) \\ \vdots \\ \phi_N(\tilde{y}_{N,k}) \end{bmatrix}$$

Two alternative strategies for the distributed controller are

- the dynamic average consensus to track the average of the update direction e_k := ũ_k = φ(ỹ_k)
- 2. the integral action to reject the consensus error $e_k := (I W) \tilde{\lambda}_k$

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 14 | 21

Strategy 1: Tracking-ADMM

Given the reference signal $e_k \coloneqq \tilde{u}_k = \phi(\tilde{y}_k)$, the *dynamic average consensus* reads

$$\begin{aligned} \xi_{k+1} &= W\xi_k + (I-W)e_k, \qquad \xi_0 = 0_N \\ d_k &= \xi_k \end{aligned}$$
The closed-loop system results in
$$\begin{split} \tilde{\lambda}_{k+1} &= W\tilde{\lambda}_k - \xi_k + \tilde{u}_k \\ \tilde{v}_{k+1} &= \xi_k \\ \xi_{k+1} &= W\xi_k + (I-W)\tilde{u}_k \\ \tilde{y}_k &= W\tilde{\lambda}_k - \tilde{v}_k \end{aligned}$$
with $\tilde{u}_k = \phi(\tilde{y}_k)$

$$\begin{split} \tilde{u}_k &= \tilde{u}_k \\ \tilde{v}_{k+1} &= d_k \\ \tilde{v}_{k+1} &= d_k \\ \tilde{v}_k &= \tilde{u}_k \\ \tilde{v}_k &= \tilde{u}_k \\ \tilde{v}_{k+1} &= W\xi_k + (I-W)\tilde{u}_k \\ \tilde{v}_k &= \tilde{v}_k \\ \tilde{v}_k &= \tilde{v}$$

Remark. The initialization is *not* arbitrary

with \tilde{u}

Local perspective of Tracking-ADMM (recall)

Reverting the error coordinates, each agent i implements the following local updates

$$\begin{split} \lambda_{i,k+1} &= \sum_{j \in N_i} w_{ij} \lambda_{j,k} - \xi_{i,k} + u_{i,k}, & \lambda_{i,0} \in \mathbb{R}^N \\ v_{i,k+1} &= \xi_{i,k}, & v_{i,0} = 0 \\ \xi_{i,k+1} &= \sum_{j \in N_i} w_{ij} \xi_{j,k} + u_{i,k} - \sum_{j \in N_i} w_{ij} u_{j,k}, & \xi_{i,0} = 0 \\ y_{i,k} &= \sum_{j \in N_i} w_{ij} \lambda_{j,k} - v_{i,k} \end{split}$$

with the input obtained as

$$\begin{aligned} x_i^+ &\in \underset{x_i \in \mathcal{X}_i}{\operatorname{argmin}} \ f_i(x_i) + \frac{1}{2c} \| c \left(H_i x_i - b_i \right) + y_{i,k} \|^2 \\ u_{i,k} &= c \left(H_i x_i^+ - b_i \right) \end{aligned}$$

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 16 | 21

Transfer matrix of Tracking-ADMM

We can compactly write

$$\begin{split} \tilde{\lambda}_{k+1} \\ \tilde{v}_{k+1} \\ \xi_{k+1} \end{bmatrix} &= \begin{bmatrix} W & 0 & -I \\ 0 & 0 & I \\ 0 & 0 & W \end{bmatrix} \begin{bmatrix} \tilde{\lambda}_k \\ \tilde{v}_k \\ \xi_k \end{bmatrix} + \begin{bmatrix} I \\ 0 \\ I - W \end{bmatrix} \tilde{u}_k \\ \tilde{y}_k &= \begin{bmatrix} W & -I & 0 \end{bmatrix} \begin{bmatrix} \tilde{\lambda}_k \\ \tilde{v}_k \\ \xi_k \end{bmatrix} \end{split}$$

in feedback with a sector-bounded nonlinearity satisfying $(\tilde{y}_k+\tilde{u}_k)^\top\tilde{y}_k\leq 0$

The transfer matrix from $ilde{u}_k$ to $\widehat{y}_k := ilde{y}_k + D ilde{u}_k$ (steal passivity from the optimization!) is given by

$$G_{\text{T-ADMM}}(\mathbf{z}) = C(\mathbf{z}I - A)^{-1}B + D$$

= $\begin{bmatrix} W & -I & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z}I - W & 0 & I \\ 0 & \mathbf{z}I & -I \\ 0 & 0 & \mathbf{z}I - W \end{bmatrix}^{-1} \begin{bmatrix} I \\ 0 \\ I - W \end{bmatrix} + D$
= $(\mathbf{z}I - W)^{-1} \left(W - \frac{1}{\mathbf{z}}(I - W) - (\mathbf{z}I - W)^{-1}(I - W) \right) + D$

Prof. I. Notarnicola • Control Tools for Distributed Optimization • ADMM and distributed ADMM 17 | 21

Positive realness of Tracking-ADMM

Example. A connected network of N = 10 agents: smallest eigenvalues of $G_{T-ADMM}(z) + G_{T-ADMM}(\bar{z})^{\top}$

Prof. I. Notarnicola

Control Tools for Distributed Optimization

ADMM and distributed ADMM

18 | 21

Convergence of Tracking-ADMM

Theorem. The transfer matrix $G_{T-ADMM}(z)$ is discrete positive real

Hence, there exists a quadratic storage function V and matrices M_y and M_u satisfying

$$V\left(\begin{bmatrix}\tilde{\lambda}_{k+1}\\\tilde{v}_{k+1}\\\xi_{k+1}\end{bmatrix}\right) - V\left(\begin{bmatrix}\tilde{\lambda}_{k}\\\tilde{v}_{k}\\\xi_{k}\end{bmatrix}\right) \leq \hat{y}_{k}^{\mathsf{T}}\tilde{u}_{k} - \frac{1}{2}\left\|M_{y}\begin{bmatrix}\tilde{\lambda}_{k}\\\tilde{v}_{k}\\\xi_{k}\end{bmatrix} + M_{u}\tilde{u}_{k}\right\|^{2}$$

with $ilde{u}_k = ilde{\phi}(\hat{y}_k)$ such that $\hat{y}_k^\top ilde{\phi}(\hat{y}_k) \leq 0$

Similar rguments as in the centralized case apply to show that

$$\lim_{k \to \infty} \lambda_k = \mathbf{1} \lambda_\star$$
$$\lim_{k \to \infty} x_{k+1} = x_\star$$

Strategy 2: Integral action for ADMM

Given the consensus error $e_k \coloneqq (I - W) \tilde{\lambda}_k$, a Proportional-Integral (PI) controller reads

$$\begin{aligned} \xi_{k+1} &= \xi_k + e_k, & \xi_0 \in \mathbb{R}^N \\ d_k &= (I - W)\xi_k + e_k \end{aligned}$$
The closed-loop system results in
$$\tilde{\lambda}_{k+1} &= (2W - I)\tilde{\lambda}_k - (I - W)\xi_k + \tilde{u}_k \\ \tilde{v}_{k+1} &= (I - W)\xi_k + (I - W)\tilde{\lambda}_k \\ \xi_{k+1} &= \xi_k + (I - W)\tilde{\lambda}_k \\ \tilde{y}_k &= W\tilde{\lambda}_k - \tilde{v}_k \end{aligned}$$

$$\begin{aligned} \tilde{u}_k & \tilde{u}_{k+1} &= W\tilde{\lambda}_k + \tilde{u}_k - d_k \\ \tilde{v}_{k+1} &= d_k \\ \tilde{v}_k &= W\tilde{\lambda}_k - \tilde{v}_k \\ \tilde{v}_k &= (I - W)\tilde{\lambda}_k \\ \tilde{v}_k &= (I - W)\tilde{\lambda}_k \\ \tilde{v}_{k+1} &= \xi_k + e_k \\ d_k & \tilde{v}_{k+1} &= \xi_k + e_k \\ d_k & \tilde{v}_{k+1} &= \xi_k + e_k \\ \tilde{v}_{$$

Remark. The initialization is arbitrary

Local perspective of the integral-action-based ADMM

By reverting the error coordinates, each agent i implements the following local updates

$$\begin{split} \lambda_{i,k+1} &= \sum_{j \in N_i} w_{ij} \lambda_{j,k} + u_{i,k}, & \lambda_{i,0} \in \mathbb{R} \\ v_{i,k+1} &= \xi_{i,k} + \lambda_{i,k} - \sum_{j \in N_i} w_{ij} (\xi_{j,k} + \lambda_{j,k}), & v_{i,0} \in \mathbb{R} \\ \xi_{i,k+1} &= \xi_{i,k} + \lambda_{i,k} - \sum_{j \in N_i} w_{ij} \lambda_{j,k}, & \xi_{i,0} \in \mathbb{R} \\ y_{i,k} &= \sum_{j \in N_i} w_{ij} \lambda_{j,k} - v_{i,k} \end{split}$$

with the input obtained as

$$x_{i}^{+} \in \underset{x_{i} \in \mathcal{X}_{i}}{\operatorname{argmin}} f_{i}(x_{i}) + \frac{1}{2c} \|c(H_{i}x_{i} - b_{i}) + y_{i,k}\|^{2}$$
$$u_{i,k} = c(H_{i}x_{i}^{+} - b_{i})$$

Remark. Same optimization step as before